Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-2x=7
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
2y-x=2
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y-2x=7,2y-x=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-2x=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=2x+7
Me tāpiri 2x ki ngā taha e rua o te whārite.
2\left(2x+7\right)-x=2
Whakakapia te 2x+7 mō te y ki tērā atu whārite, 2y-x=2.
4x+14-x=2
Whakareatia 2 ki te 2x+7.
3x+14=2
Tāpiri 4x ki te -x.
3x=-12
Me tango 14 mai i ngā taha e rua o te whārite.
x=-4
Whakawehea ngā taha e rua ki te 3.
y=2\left(-4\right)+7
Whakaurua te -4 mō x ki y=2x+7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-8+7
Whakareatia 2 ki te -4.
y=-1
Tāpiri 7 ki te -8.
y=-1,x=-4
Kua oti te pūnaha te whakatau.
y-2x=7
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
2y-x=2
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y-2x=7,2y-x=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-2\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}7\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}1&-2\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}7\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-2\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}7\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}7\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-2\times 2\right)}&-\frac{-2}{-1-\left(-2\times 2\right)}\\-\frac{2}{-1-\left(-2\times 2\right)}&\frac{1}{-1-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}7\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}7\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 7+\frac{2}{3}\times 2\\-\frac{2}{3}\times 7+\frac{1}{3}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
y=-1,x=-4
Tangohia ngā huānga poukapa y me x.
y-2x=7
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
2y-x=2
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y-2x=7,2y-x=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2y+2\left(-2\right)x=2\times 7,2y-x=2
Kia ōrite ai a y me 2y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2y-4x=14,2y-x=2
Whakarūnātia.
2y-2y-4x+x=14-2
Me tango 2y-x=2 mai i 2y-4x=14 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4x+x=14-2
Tāpiri 2y ki te -2y. Ka whakakore atu ngā kupu 2y me -2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3x=14-2
Tāpiri -4x ki te x.
-3x=12
Tāpiri 14 ki te -2.
x=-4
Whakawehea ngā taha e rua ki te -3.
2y-\left(-4\right)=2
Whakaurua te -4 mō x ki 2y-x=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
2y=-2
Me tango 4 mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te 2.
y=-1,x=-4
Kua oti te pūnaha te whakatau.