Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-0.5x=2
Whakaarohia te whārite tuatahi. Tangohia te 0.5x mai i ngā taha e rua.
y-0.5x=2,3y+x=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-0.5x=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=0.5x+2
Me tāpiri \frac{x}{2} ki ngā taha e rua o te whārite.
3\left(0.5x+2\right)+x=1
Whakakapia te \frac{x}{2}+2 mō te y ki tērā atu whārite, 3y+x=1.
1.5x+6+x=1
Whakareatia 3 ki te \frac{x}{2}+2.
2.5x+6=1
Tāpiri \frac{3x}{2} ki te x.
2.5x=-5
Me tango 6 mai i ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua o te whārite ki te 2.5, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=0.5\left(-2\right)+2
Whakaurua te -2 mō x ki y=0.5x+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-1+2
Whakareatia 0.5 ki te -2.
y=1
Tāpiri 2 ki te -1.
y=1,x=-2
Kua oti te pūnaha te whakatau.
y-0.5x=2
Whakaarohia te whārite tuatahi. Tangohia te 0.5x mai i ngā taha e rua.
y-0.5x=2,3y+x=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right))\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-0.5\\3&1\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-0.5\times 3\right)}&-\frac{-0.5}{1-\left(-0.5\times 3\right)}\\-\frac{3}{1-\left(-0.5\times 3\right)}&\frac{1}{1-\left(-0.5\times 3\right)}\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0.4&0.2\\-1.2&0.4\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0.4\times 2+0.2\\-1.2\times 2+0.4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
y=1,x=-2
Tangohia ngā huānga poukapa y me x.
y-0.5x=2
Whakaarohia te whārite tuatahi. Tangohia te 0.5x mai i ngā taha e rua.
y-0.5x=2,3y+x=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3y+3\left(-0.5\right)x=3\times 2,3y+x=1
Kia ōrite ai a y me 3y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3y-1.5x=6,3y+x=1
Whakarūnātia.
3y-3y-1.5x-x=6-1
Me tango 3y+x=1 mai i 3y-1.5x=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-1.5x-x=6-1
Tāpiri 3y ki te -3y. Ka whakakore atu ngā kupu 3y me -3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2.5x=6-1
Tāpiri -\frac{3x}{2} ki te -x.
-2.5x=5
Tāpiri 6 ki te -1.
x=-2
Whakawehea ngā taha e rua o te whārite ki te -2.5, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
3y-2=1
Whakaurua te -2 mō x ki 3y+x=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
3y=3
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua ki te 3.
y=1,x=-2
Kua oti te pūnaha te whakatau.