Whakaoti mō y, x
x=-11
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+x=-7
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y+x=-7,5y+3x=-13
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+x=-7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-x-7
Me tango x mai i ngā taha e rua o te whārite.
5\left(-x-7\right)+3x=-13
Whakakapia te -x-7 mō te y ki tērā atu whārite, 5y+3x=-13.
-5x-35+3x=-13
Whakareatia 5 ki te -x-7.
-2x-35=-13
Tāpiri -5x ki te 3x.
-2x=22
Me tāpiri 35 ki ngā taha e rua o te whārite.
x=-11
Whakawehea ngā taha e rua ki te -2.
y=-\left(-11\right)-7
Whakaurua te -11 mō x ki y=-x-7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=11-7
Whakareatia -1 ki te -11.
y=4
Tāpiri -7 ki te 11.
y=4,x=-11
Kua oti te pūnaha te whakatau.
y+x=-7
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y+x=-7,5y+3x=-13
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\5&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-7\\-13\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\5&3\end{matrix}\right))\left(\begin{matrix}1&1\\5&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&3\end{matrix}\right))\left(\begin{matrix}-7\\-13\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\5&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&3\end{matrix}\right))\left(\begin{matrix}-7\\-13\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&3\end{matrix}\right))\left(\begin{matrix}-7\\-13\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-5}&-\frac{1}{3-5}\\-\frac{5}{3-5}&\frac{1}{3-5}\end{matrix}\right)\left(\begin{matrix}-7\\-13\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2}&\frac{1}{2}\\\frac{5}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-7\\-13\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2}\left(-7\right)+\frac{1}{2}\left(-13\right)\\\frac{5}{2}\left(-7\right)-\frac{1}{2}\left(-13\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\-11\end{matrix}\right)
Mahia ngā tātaitanga.
y=4,x=-11
Tangohia ngā huānga poukapa y me x.
y+x=-7
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y+x=-7,5y+3x=-13
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5y+5x=5\left(-7\right),5y+3x=-13
Kia ōrite ai a y me 5y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
5y+5x=-35,5y+3x=-13
Whakarūnātia.
5y-5y+5x-3x=-35+13
Me tango 5y+3x=-13 mai i 5y+5x=-35 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5x-3x=-35+13
Tāpiri 5y ki te -5y. Ka whakakore atu ngā kupu 5y me -5y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2x=-35+13
Tāpiri 5x ki te -3x.
2x=-22
Tāpiri -35 ki te 13.
x=-11
Whakawehea ngā taha e rua ki te 2.
5y+3\left(-11\right)=-13
Whakaurua te -11 mō x ki 5y+3x=-13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
5y-33=-13
Whakareatia 3 ki te -11.
5y=20
Me tāpiri 33 ki ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua ki te 5.
y=4,x=-11
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}