Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+x=-3
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y+8x=4
Whakaarohia te whārite tuarua. Me tāpiri te 8x ki ngā taha e rua.
y+x=-3,y+8x=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+x=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-x-3
Me tango x mai i ngā taha e rua o te whārite.
-x-3+8x=4
Whakakapia te -x-3 mō te y ki tērā atu whārite, y+8x=4.
7x-3=4
Tāpiri -x ki te 8x.
7x=7
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 7.
y=-1-3
Whakaurua te 1 mō x ki y=-x-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-4
Tāpiri -3 ki te -1.
y=-4,x=1
Kua oti te pūnaha te whakatau.
y+x=-3
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y+8x=4
Whakaarohia te whārite tuarua. Me tāpiri te 8x ki ngā taha e rua.
y+x=-3,y+8x=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&8\end{matrix}\right))\left(\begin{matrix}1&1\\1&8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&8\end{matrix}\right))\left(\begin{matrix}-3\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&8\end{matrix}\right))\left(\begin{matrix}-3\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&8\end{matrix}\right))\left(\begin{matrix}-3\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{8-1}&-\frac{1}{8-1}\\-\frac{1}{8-1}&\frac{1}{8-1}\end{matrix}\right)\left(\begin{matrix}-3\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{7}&-\frac{1}{7}\\-\frac{1}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-3\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{7}\left(-3\right)-\frac{1}{7}\times 4\\-\frac{1}{7}\left(-3\right)+\frac{1}{7}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\1\end{matrix}\right)
Mahia ngā tātaitanga.
y=-4,x=1
Tangohia ngā huānga poukapa y me x.
y+x=-3
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y+8x=4
Whakaarohia te whārite tuarua. Me tāpiri te 8x ki ngā taha e rua.
y+x=-3,y+8x=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+x-8x=-3-4
Me tango y+8x=4 mai i y+x=-3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x-8x=-3-4
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7x=-3-4
Tāpiri x ki te -8x.
-7x=-7
Tāpiri -3 ki te -4.
x=1
Whakawehea ngā taha e rua ki te -7.
y+8=4
Whakaurua te 1 mō x ki y+8x=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-4
Me tango 8 mai i ngā taha e rua o te whārite.
y=-4,x=1
Kua oti te pūnaha te whakatau.