Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+x=7
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y-6x=0
Whakaarohia te whārite tuarua. Tangohia te 6x mai i ngā taha e rua.
y+x=7,y-6x=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+x=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-x+7
Me tango x mai i ngā taha e rua o te whārite.
-x+7-6x=0
Whakakapia te -x+7 mō te y ki tērā atu whārite, y-6x=0.
-7x+7=0
Tāpiri -x ki te -6x.
-7x=-7
Me tango 7 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -7.
y=-1+7
Whakaurua te 1 mō x ki y=-x+7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=6
Tāpiri 7 ki te -1.
y=6,x=1
Kua oti te pūnaha te whakatau.
y+x=7
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y-6x=0
Whakaarohia te whārite tuarua. Tangohia te 6x mai i ngā taha e rua.
y+x=7,y-6x=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&-6\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}7\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&-6\end{matrix}\right))\left(\begin{matrix}1&1\\1&-6\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-6\end{matrix}\right))\left(\begin{matrix}7\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-6\end{matrix}\right))\left(\begin{matrix}7\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-6\end{matrix}\right))\left(\begin{matrix}7\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-6-1}&-\frac{1}{-6-1}\\-\frac{1}{-6-1}&\frac{1}{-6-1}\end{matrix}\right)\left(\begin{matrix}7\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{6}{7}&\frac{1}{7}\\\frac{1}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}7\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{6}{7}\times 7\\\frac{1}{7}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\1\end{matrix}\right)
Mahia ngā tātaitanga.
y=6,x=1
Tangohia ngā huānga poukapa y me x.
y+x=7
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y-6x=0
Whakaarohia te whārite tuarua. Tangohia te 6x mai i ngā taha e rua.
y+x=7,y-6x=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+x+6x=7
Me tango y-6x=0 mai i y+x=7 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x+6x=7
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7x=7
Tāpiri x ki te 6x.
x=1
Whakawehea ngā taha e rua ki te 7.
y-6=0
Whakaurua te 1 mō x ki y-6x=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=6
Me tāpiri 6 ki ngā taha e rua o te whārite.
y=6,x=1
Kua oti te pūnaha te whakatau.