Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+x=6
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y-\frac{1}{2}x=-1
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{2}x mai i ngā taha e rua.
y+x=6,y-\frac{1}{2}x=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+x=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-x+6
Me tango x mai i ngā taha e rua o te whārite.
-x+6-\frac{1}{2}x=-1
Whakakapia te -x+6 mō te y ki tērā atu whārite, y-\frac{1}{2}x=-1.
-\frac{3}{2}x+6=-1
Tāpiri -x ki te -\frac{x}{2}.
-\frac{3}{2}x=-7
Me tango 6 mai i ngā taha e rua o te whārite.
x=\frac{14}{3}
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=-\frac{14}{3}+6
Whakaurua te \frac{14}{3} mō x ki y=-x+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{4}{3}
Tāpiri 6 ki te -\frac{14}{3}.
y=\frac{4}{3},x=\frac{14}{3}
Kua oti te pūnaha te whakatau.
y+x=6
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y-\frac{1}{2}x=-1
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{2}x mai i ngā taha e rua.
y+x=6,y-\frac{1}{2}x=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1&1\\1&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&-\frac{1}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{2}}{-\frac{1}{2}-1}&-\frac{1}{-\frac{1}{2}-1}\\-\frac{1}{-\frac{1}{2}-1}&\frac{1}{-\frac{1}{2}-1}\end{matrix}\right)\left(\begin{matrix}6\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\\frac{2}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}6\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 6+\frac{2}{3}\left(-1\right)\\\frac{2}{3}\times 6-\frac{2}{3}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}\\\frac{14}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
y=\frac{4}{3},x=\frac{14}{3}
Tangohia ngā huānga poukapa y me x.
y+x=6
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y-\frac{1}{2}x=-1
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{2}x mai i ngā taha e rua.
y+x=6,y-\frac{1}{2}x=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+x+\frac{1}{2}x=6+1
Me tango y-\frac{1}{2}x=-1 mai i y+x=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x+\frac{1}{2}x=6+1
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{3}{2}x=6+1
Tāpiri x ki te \frac{x}{2}.
\frac{3}{2}x=7
Tāpiri 6 ki te 1.
x=\frac{14}{3}
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y-\frac{1}{2}\times \frac{14}{3}=-1
Whakaurua te \frac{14}{3} mō x ki y-\frac{1}{2}x=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y-\frac{7}{3}=-1
Whakareatia -\frac{1}{2} ki te \frac{14}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{4}{3}
Me tāpiri \frac{7}{3} ki ngā taha e rua o te whārite.
y=\frac{4}{3},x=\frac{14}{3}
Kua oti te pūnaha te whakatau.