Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+x=6
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y+x=6,-2y+x=-6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+x=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-x+6
Me tango x mai i ngā taha e rua o te whārite.
-2\left(-x+6\right)+x=-6
Whakakapia te -x+6 mō te y ki tērā atu whārite, -2y+x=-6.
2x-12+x=-6
Whakareatia -2 ki te -x+6.
3x-12=-6
Tāpiri 2x ki te x.
3x=6
Me tāpiri 12 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 3.
y=-2+6
Whakaurua te 2 mō x ki y=-x+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=4
Tāpiri 6 ki te -2.
y=4,x=2
Kua oti te pūnaha te whakatau.
y+x=6
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y+x=6,-2y+x=-6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\-2&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\-6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}1&1\\-2&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}6\\-6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\-2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}6\\-6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}6\\-6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\right)}&-\frac{1}{1-\left(-2\right)}\\-\frac{-2}{1-\left(-2\right)}&\frac{1}{1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}6\\-6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}6\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 6-\frac{1}{3}\left(-6\right)\\\frac{2}{3}\times 6+\frac{1}{3}\left(-6\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Mahia ngā tātaitanga.
y=4,x=2
Tangohia ngā huānga poukapa y me x.
y+x=6
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y+x=6,-2y+x=-6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y+2y+x-x=6+6
Me tango -2y+x=-6 mai i y+x=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+2y=6+6
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=6+6
Tāpiri y ki te 2y.
3y=12
Tāpiri 6 ki te 6.
y=4
Whakawehea ngā taha e rua ki te 3.
-2\times 4+x=-6
Whakaurua te 4 mō y ki -2y+x=-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-8+x=-6
Whakareatia -2 ki te 4.
x=2
Me tāpiri 8 ki ngā taha e rua o te whārite.
y=4,x=2
Kua oti te pūnaha te whakatau.