Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+x=3
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y-x=-1
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y+x=3,y-x=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+x=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-x+3
Me tango x mai i ngā taha e rua o te whārite.
-x+3-x=-1
Whakakapia te -x+3 mō te y ki tērā atu whārite, y-x=-1.
-2x+3=-1
Tāpiri -x ki te -x.
-2x=-4
Me tango 3 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te -2.
y=-2+3
Whakaurua te 2 mō x ki y=-x+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=1
Tāpiri 3 ki te -2.
y=1,x=2
Kua oti te pūnaha te whakatau.
y+x=3
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y-x=-1
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y+x=3,y-x=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3+\frac{1}{2}\left(-1\right)\\\frac{1}{2}\times 3-\frac{1}{2}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Mahia ngā tātaitanga.
y=1,x=2
Tangohia ngā huānga poukapa y me x.
y+x=3
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y-x=-1
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y+x=3,y-x=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+x+x=3+1
Me tango y-x=-1 mai i y+x=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x+x=3+1
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2x=3+1
Tāpiri x ki te x.
2x=4
Tāpiri 3 ki te 1.
x=2
Whakawehea ngā taha e rua ki te 2.
y-2=-1
Whakaurua te 2 mō x ki y-x=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=1
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=1,x=2
Kua oti te pūnaha te whakatau.