Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+6x=2
Whakaarohia te whārite tuatahi. Me tāpiri te 6x ki ngā taha e rua.
y+x=-3
Whakaarohia te whārite tuarua. Me tāpiri te x ki ngā taha e rua.
y+6x=2,y+x=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+6x=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-6x+2
Me tango 6x mai i ngā taha e rua o te whārite.
-6x+2+x=-3
Whakakapia te -6x+2 mō te y ki tērā atu whārite, y+x=-3.
-5x+2=-3
Tāpiri -6x ki te x.
-5x=-5
Me tango 2 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -5.
y=-6+2
Whakaurua te 1 mō x ki y=-6x+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-4
Tāpiri 2 ki te -6.
y=-4,x=1
Kua oti te pūnaha te whakatau.
y+6x=2
Whakaarohia te whārite tuatahi. Me tāpiri te 6x ki ngā taha e rua.
y+x=-3
Whakaarohia te whārite tuarua. Me tāpiri te x ki ngā taha e rua.
y+6x=2,y+x=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&6\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&6\\1&1\end{matrix}\right))\left(\begin{matrix}1&6\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&6\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-6}&-\frac{6}{1-6}\\-\frac{1}{1-6}&\frac{1}{1-6}\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{6}{5}\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 2+\frac{6}{5}\left(-3\right)\\\frac{1}{5}\times 2-\frac{1}{5}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\1\end{matrix}\right)
Mahia ngā tātaitanga.
y=-4,x=1
Tangohia ngā huānga poukapa y me x.
y+6x=2
Whakaarohia te whārite tuatahi. Me tāpiri te 6x ki ngā taha e rua.
y+x=-3
Whakaarohia te whārite tuarua. Me tāpiri te x ki ngā taha e rua.
y+6x=2,y+x=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+6x-x=2+3
Me tango y+x=-3 mai i y+6x=2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6x-x=2+3
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5x=2+3
Tāpiri 6x ki te -x.
5x=5
Tāpiri 2 ki te 3.
x=1
Whakawehea ngā taha e rua ki te 5.
y+1=-3
Whakaurua te 1 mō x ki y+x=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-4
Me tango 1 mai i ngā taha e rua o te whārite.
y=-4,x=1
Kua oti te pūnaha te whakatau.