Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+5x=1
Whakaarohia te whārite tuatahi. Me tāpiri te 5x ki ngā taha e rua.
y-x=7
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y+5x=1,y-x=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+5x=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-5x+1
Me tango 5x mai i ngā taha e rua o te whārite.
-5x+1-x=7
Whakakapia te -5x+1 mō te y ki tērā atu whārite, y-x=7.
-6x+1=7
Tāpiri -5x ki te -x.
-6x=6
Me tango 1 mai i ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te -6.
y=-5\left(-1\right)+1
Whakaurua te -1 mō x ki y=-5x+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=5+1
Whakareatia -5 ki te -1.
y=6
Tāpiri 1 ki te 5.
y=6,x=-1
Kua oti te pūnaha te whakatau.
y+5x=1
Whakaarohia te whārite tuatahi. Me tāpiri te 5x ki ngā taha e rua.
y-x=7
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y+5x=1,y-x=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&5\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&5\\1&-1\end{matrix}\right))\left(\begin{matrix}1&5\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&5\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-5}&-\frac{5}{-1-5}\\-\frac{1}{-1-5}&\frac{1}{-1-5}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{5}{6}\\\frac{1}{6}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}+\frac{5}{6}\times 7\\\frac{1}{6}-\frac{1}{6}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
y=6,x=-1
Tangohia ngā huānga poukapa y me x.
y+5x=1
Whakaarohia te whārite tuatahi. Me tāpiri te 5x ki ngā taha e rua.
y-x=7
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y+5x=1,y-x=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+5x+x=1-7
Me tango y-x=7 mai i y+5x=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5x+x=1-7
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
6x=1-7
Tāpiri 5x ki te x.
6x=-6
Tāpiri 1 ki te -7.
x=-1
Whakawehea ngā taha e rua ki te 6.
y-\left(-1\right)=7
Whakaurua te -1 mō x ki y-x=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y+1=7
Whakareatia -1 ki te -1.
y=6
Me tango 1 mai i ngā taha e rua o te whārite.
y=6,x=-1
Kua oti te pūnaha te whakatau.