Whakaoti mō y, x
x=-4
y=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+4x=-17
Whakaarohia te whārite tuatahi. Me tāpiri te 4x ki ngā taha e rua.
y+4x=-17,6y-2x=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+4x=-17
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-4x-17
Me tango 4x mai i ngā taha e rua o te whārite.
6\left(-4x-17\right)-2x=2
Whakakapia te -4x-17 mō te y ki tērā atu whārite, 6y-2x=2.
-24x-102-2x=2
Whakareatia 6 ki te -4x-17.
-26x-102=2
Tāpiri -24x ki te -2x.
-26x=104
Me tāpiri 102 ki ngā taha e rua o te whārite.
x=-4
Whakawehea ngā taha e rua ki te -26.
y=-4\left(-4\right)-17
Whakaurua te -4 mō x ki y=-4x-17. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=16-17
Whakareatia -4 ki te -4.
y=-1
Tāpiri -17 ki te 16.
y=-1,x=-4
Kua oti te pūnaha te whakatau.
y+4x=-17
Whakaarohia te whārite tuatahi. Me tāpiri te 4x ki ngā taha e rua.
y+4x=-17,6y-2x=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&4\\6&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-17\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&4\\6&-2\end{matrix}\right))\left(\begin{matrix}1&4\\6&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\6&-2\end{matrix}\right))\left(\begin{matrix}-17\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&4\\6&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\6&-2\end{matrix}\right))\left(\begin{matrix}-17\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\6&-2\end{matrix}\right))\left(\begin{matrix}-17\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-4\times 6}&-\frac{4}{-2-4\times 6}\\-\frac{6}{-2-4\times 6}&\frac{1}{-2-4\times 6}\end{matrix}\right)\left(\begin{matrix}-17\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}&\frac{2}{13}\\\frac{3}{13}&-\frac{1}{26}\end{matrix}\right)\left(\begin{matrix}-17\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}\left(-17\right)+\frac{2}{13}\times 2\\\frac{3}{13}\left(-17\right)-\frac{1}{26}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
y=-1,x=-4
Tangohia ngā huānga poukapa y me x.
y+4x=-17
Whakaarohia te whārite tuatahi. Me tāpiri te 4x ki ngā taha e rua.
y+4x=-17,6y-2x=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6y+6\times 4x=6\left(-17\right),6y-2x=2
Kia ōrite ai a y me 6y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
6y+24x=-102,6y-2x=2
Whakarūnātia.
6y-6y+24x+2x=-102-2
Me tango 6y-2x=2 mai i 6y+24x=-102 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
24x+2x=-102-2
Tāpiri 6y ki te -6y. Ka whakakore atu ngā kupu 6y me -6y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
26x=-102-2
Tāpiri 24x ki te 2x.
26x=-104
Tāpiri -102 ki te -2.
x=-4
Whakawehea ngā taha e rua ki te 26.
6y-2\left(-4\right)=2
Whakaurua te -4 mō x ki 6y-2x=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
6y+8=2
Whakareatia -2 ki te -4.
6y=-6
Me tango 8 mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te 6.
y=-1,x=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}