Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+2x=0
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y+2x=0,6y+4x=24
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+2x=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-2x
Me tango 2x mai i ngā taha e rua o te whārite.
6\left(-2\right)x+4x=24
Whakakapia te -2x mō te y ki tērā atu whārite, 6y+4x=24.
-12x+4x=24
Whakareatia 6 ki te -2x.
-8x=24
Tāpiri -12x ki te 4x.
x=-3
Whakawehea ngā taha e rua ki te -8.
y=-2\left(-3\right)
Whakaurua te -3 mō x ki y=-2x. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=6
Whakareatia -2 ki te -3.
y=6,x=-3
Kua oti te pūnaha te whakatau.
y+2x=0
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y+2x=0,6y+4x=24
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\6&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\24\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\6&4\end{matrix}\right))\left(\begin{matrix}1&2\\6&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\6&4\end{matrix}\right))\left(\begin{matrix}0\\24\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\6&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\6&4\end{matrix}\right))\left(\begin{matrix}0\\24\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\6&4\end{matrix}\right))\left(\begin{matrix}0\\24\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-2\times 6}&-\frac{2}{4-2\times 6}\\-\frac{6}{4-2\times 6}&\frac{1}{4-2\times 6}\end{matrix}\right)\left(\begin{matrix}0\\24\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{4}\\\frac{3}{4}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}0\\24\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 24\\-\frac{1}{8}\times 24\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
y=6,x=-3
Tangohia ngā huānga poukapa y me x.
y+2x=0
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y+2x=0,6y+4x=24
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6y+6\times 2x=0,6y+4x=24
Kia ōrite ai a y me 6y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
6y+12x=0,6y+4x=24
Whakarūnātia.
6y-6y+12x-4x=-24
Me tango 6y+4x=24 mai i 6y+12x=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12x-4x=-24
Tāpiri 6y ki te -6y. Ka whakakore atu ngā kupu 6y me -6y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
8x=-24
Tāpiri 12x ki te -4x.
x=-3
Whakawehea ngā taha e rua ki te 8.
6y+4\left(-3\right)=24
Whakaurua te -3 mō x ki 6y+4x=24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
6y-12=24
Whakareatia 4 ki te -3.
6y=36
Me tāpiri 12 ki ngā taha e rua o te whārite.
y=6
Whakawehea ngā taha e rua ki te 6.
y=6,x=-3
Kua oti te pūnaha te whakatau.