Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+2x=4
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y-x=1
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y+2x=4,y-x=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+2x=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-2x+4
Me tango 2x mai i ngā taha e rua o te whārite.
-2x+4-x=1
Whakakapia te -2x+4 mō te y ki tērā atu whārite, y-x=1.
-3x+4=1
Tāpiri -2x ki te -x.
-3x=-3
Me tango 4 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -3.
y=-2+4
Whakaurua te 1 mō x ki y=-2x+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=2
Tāpiri 4 ki te -2.
y=2,x=1
Kua oti te pūnaha te whakatau.
y+2x=4
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y-x=1
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y+2x=4,y-x=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{2}{-1-2}\\-\frac{1}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 4+\frac{2}{3}\\\frac{1}{3}\times 4-\frac{1}{3}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Mahia ngā tātaitanga.
y=2,x=1
Tangohia ngā huānga poukapa y me x.
y+2x=4
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y-x=1
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y+2x=4,y-x=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+2x+x=4-1
Me tango y-x=1 mai i y+2x=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2x+x=4-1
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3x=4-1
Tāpiri 2x ki te x.
3x=3
Tāpiri 4 ki te -1.
x=1
Whakawehea ngā taha e rua ki te 3.
y-1=1
Whakaurua te 1 mō x ki y-x=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=2
Me tāpiri 1 ki ngā taha e rua o te whārite.
y=2,x=1
Kua oti te pūnaha te whakatau.