Whakaoti mō y, x
x=7
y=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+2x=13
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y+2x=13,8y+4x=20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+2x=13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-2x+13
Me tango 2x mai i ngā taha e rua o te whārite.
8\left(-2x+13\right)+4x=20
Whakakapia te -2x+13 mō te y ki tērā atu whārite, 8y+4x=20.
-16x+104+4x=20
Whakareatia 8 ki te -2x+13.
-12x+104=20
Tāpiri -16x ki te 4x.
-12x=-84
Me tango 104 mai i ngā taha e rua o te whārite.
x=7
Whakawehea ngā taha e rua ki te -12.
y=-2\times 7+13
Whakaurua te 7 mō x ki y=-2x+13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-14+13
Whakareatia -2 ki te 7.
y=-1
Tāpiri 13 ki te -14.
y=-1,x=7
Kua oti te pūnaha te whakatau.
y+2x=13
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y+2x=13,8y+4x=20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\8&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}13\\20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\8&4\end{matrix}\right))\left(\begin{matrix}1&2\\8&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\8&4\end{matrix}\right))\left(\begin{matrix}13\\20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\8&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\8&4\end{matrix}\right))\left(\begin{matrix}13\\20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\8&4\end{matrix}\right))\left(\begin{matrix}13\\20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-2\times 8}&-\frac{2}{4-2\times 8}\\-\frac{8}{4-2\times 8}&\frac{1}{4-2\times 8}\end{matrix}\right)\left(\begin{matrix}13\\20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{6}\\\frac{2}{3}&-\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}13\\20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 13+\frac{1}{6}\times 20\\\frac{2}{3}\times 13-\frac{1}{12}\times 20\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\7\end{matrix}\right)
Mahia ngā tātaitanga.
y=-1,x=7
Tangohia ngā huānga poukapa y me x.
y+2x=13
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y+2x=13,8y+4x=20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8y+8\times 2x=8\times 13,8y+4x=20
Kia ōrite ai a y me 8y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
8y+16x=104,8y+4x=20
Whakarūnātia.
8y-8y+16x-4x=104-20
Me tango 8y+4x=20 mai i 8y+16x=104 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
16x-4x=104-20
Tāpiri 8y ki te -8y. Ka whakakore atu ngā kupu 8y me -8y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
12x=104-20
Tāpiri 16x ki te -4x.
12x=84
Tāpiri 104 ki te -20.
x=7
Whakawehea ngā taha e rua ki te 12.
8y+4\times 7=20
Whakaurua te 7 mō x ki 8y+4x=20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
8y+28=20
Whakareatia 4 ki te 7.
8y=-8
Me tango 28 mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te 8.
y=-1,x=7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}