Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+2x=1
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y-6x=-15
Whakaarohia te whārite tuarua. Tangohia te 6x mai i ngā taha e rua.
y+2x=1,y-6x=-15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+2x=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-2x+1
Me tango 2x mai i ngā taha e rua o te whārite.
-2x+1-6x=-15
Whakakapia te -2x+1 mō te y ki tērā atu whārite, y-6x=-15.
-8x+1=-15
Tāpiri -2x ki te -6x.
-8x=-16
Me tango 1 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te -8.
y=-2\times 2+1
Whakaurua te 2 mō x ki y=-2x+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-4+1
Whakareatia -2 ki te 2.
y=-3
Tāpiri 1 ki te -4.
y=-3,x=2
Kua oti te pūnaha te whakatau.
y+2x=1
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y-6x=-15
Whakaarohia te whārite tuarua. Tangohia te 6x mai i ngā taha e rua.
y+2x=1,y-6x=-15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\1&-6\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\1&-6\end{matrix}\right))\left(\begin{matrix}1&2\\1&-6\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-6\end{matrix}\right))\left(\begin{matrix}1\\-15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\1&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-6\end{matrix}\right))\left(\begin{matrix}1\\-15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-6\end{matrix}\right))\left(\begin{matrix}1\\-15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-6-2}&-\frac{2}{-6-2}\\-\frac{1}{-6-2}&\frac{1}{-6-2}\end{matrix}\right)\left(\begin{matrix}1\\-15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{4}\\\frac{1}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}1\\-15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}+\frac{1}{4}\left(-15\right)\\\frac{1}{8}-\frac{1}{8}\left(-15\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
y=-3,x=2
Tangohia ngā huānga poukapa y me x.
y+2x=1
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y-6x=-15
Whakaarohia te whārite tuarua. Tangohia te 6x mai i ngā taha e rua.
y+2x=1,y-6x=-15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+2x+6x=1+15
Me tango y-6x=-15 mai i y+2x=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2x+6x=1+15
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
8x=1+15
Tāpiri 2x ki te 6x.
8x=16
Tāpiri 1 ki te 15.
x=2
Whakawehea ngā taha e rua ki te 8.
y-6\times 2=-15
Whakaurua te 2 mō x ki y-6x=-15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y-12=-15
Whakareatia -6 ki te 2.
y=-3
Me tāpiri 12 ki ngā taha e rua o te whārite.
y=-3,x=2
Kua oti te pūnaha te whakatau.