Whakaoti mō y, x
x=4
y=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+\frac{1}{2}x=1
Whakaarohia te whārite tuatahi. Me tāpiri te \frac{1}{2}x ki ngā taha e rua.
y-\frac{1}{2}x=-3
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{2}x mai i ngā taha e rua.
y+\frac{1}{2}x=1,y-\frac{1}{2}x=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+\frac{1}{2}x=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-\frac{1}{2}x+1
Me tango \frac{x}{2} mai i ngā taha e rua o te whārite.
-\frac{1}{2}x+1-\frac{1}{2}x=-3
Whakakapia te -\frac{x}{2}+1 mō te y ki tērā atu whārite, y-\frac{1}{2}x=-3.
-x+1=-3
Tāpiri -\frac{x}{2} ki te -\frac{x}{2}.
-x=-4
Me tango 1 mai i ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te -1.
y=-\frac{1}{2}\times 4+1
Whakaurua te 4 mō x ki y=-\frac{1}{2}x+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-2+1
Whakareatia -\frac{1}{2} ki te 4.
y=-1
Tāpiri 1 ki te -2.
y=-1,x=4
Kua oti te pūnaha te whakatau.
y+\frac{1}{2}x=1
Whakaarohia te whārite tuatahi. Me tāpiri te \frac{1}{2}x ki ngā taha e rua.
y-\frac{1}{2}x=-3
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{2}x mai i ngā taha e rua.
y+\frac{1}{2}x=1,y-\frac{1}{2}x=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&\frac{1}{2}\\1&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&\frac{1}{2}\\1&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1&\frac{1}{2}\\1&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{1}{2}\\1&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&\frac{1}{2}\\1&-\frac{1}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{1}{2}\\1&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{1}{2}\\1&-\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{2}}{-\frac{1}{2}-\frac{1}{2}}&-\frac{\frac{1}{2}}{-\frac{1}{2}-\frac{1}{2}}\\-\frac{1}{-\frac{1}{2}-\frac{1}{2}}&\frac{1}{-\frac{1}{2}-\frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}1\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\1&-1\end{matrix}\right)\left(\begin{matrix}1\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}+\frac{1}{2}\left(-3\right)\\1-\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\4\end{matrix}\right)
Mahia ngā tātaitanga.
y=-1,x=4
Tangohia ngā huānga poukapa y me x.
y+\frac{1}{2}x=1
Whakaarohia te whārite tuatahi. Me tāpiri te \frac{1}{2}x ki ngā taha e rua.
y-\frac{1}{2}x=-3
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{2}x mai i ngā taha e rua.
y+\frac{1}{2}x=1,y-\frac{1}{2}x=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+\frac{1}{2}x+\frac{1}{2}x=1+3
Me tango y-\frac{1}{2}x=-3 mai i y+\frac{1}{2}x=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{1}{2}x+\frac{1}{2}x=1+3
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
x=1+3
Tāpiri \frac{x}{2} ki te \frac{x}{2}.
x=4
Tāpiri 1 ki te 3.
y-\frac{1}{2}\times 4=-3
Whakaurua te 4 mō x ki y-\frac{1}{2}x=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y-2=-3
Whakareatia -\frac{1}{2} ki te 4.
y=-1
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=-1,x=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}