Whakaoti mō y, x
x=-4\sqrt{3}-4\approx -10.92820323
y=-4\sqrt{3}-7\approx -13.92820323
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-\sqrt{3}x=5
Whakaarohia te whārite tuatahi. Tangohia te \sqrt{3}x mai i ngā taha e rua.
-\sqrt{3}x+y=5
Whakaraupapatia anō ngā kīanga tau.
x-y=3
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
\left(-\sqrt{3}\right)x+y=5,x-y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\left(-\sqrt{3}\right)x+y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\left(-\sqrt{3}\right)x=-y+5
Me tango y mai i ngā taha e rua o te whārite.
x=\left(-\frac{\sqrt{3}}{3}\right)\left(-y+5\right)
Whakawehea ngā taha e rua ki te -\sqrt{3}.
x=\frac{\sqrt{3}}{3}y-\frac{5\sqrt{3}}{3}
Whakareatia -\frac{\sqrt{3}}{3} ki te -y+5.
\frac{\sqrt{3}}{3}y-\frac{5\sqrt{3}}{3}-y=3
Whakakapia te \frac{\left(-5+y\right)\sqrt{3}}{3} mō te x ki tērā atu whārite, x-y=3.
\left(\frac{\sqrt{3}}{3}-1\right)y-\frac{5\sqrt{3}}{3}=3
Tāpiri \frac{\sqrt{3}y}{3} ki te -y.
\left(\frac{\sqrt{3}}{3}-1\right)y=\frac{5\sqrt{3}}{3}+3
Me tāpiri \frac{5\sqrt{3}}{3} ki ngā taha e rua o te whārite.
y=-4\sqrt{3}-7
Whakawehea ngā taha e rua ki te \frac{\sqrt{3}}{3}-1.
x=\frac{\sqrt{3}}{3}\left(-4\sqrt{3}-7\right)-\frac{5\sqrt{3}}{3}
Whakaurua te -4\sqrt{3}-7 mō y ki x=\frac{\sqrt{3}}{3}y-\frac{5\sqrt{3}}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{7\sqrt{3}}{3}-4-\frac{5\sqrt{3}}{3}
Whakareatia \frac{\sqrt{3}}{3} ki te -4\sqrt{3}-7.
x=-4\sqrt{3}-4
Tāpiri -\frac{5\sqrt{3}}{3} ki te -4-\frac{7\sqrt{3}}{3}.
x=-4\sqrt{3}-4,y=-4\sqrt{3}-7
Kua oti te pūnaha te whakatau.
y-\sqrt{3}x=5
Whakaarohia te whārite tuatahi. Tangohia te \sqrt{3}x mai i ngā taha e rua.
-\sqrt{3}x+y=5
Whakaraupapatia anō ngā kīanga tau.
x-y=3
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
\left(-\sqrt{3}\right)x+y=5,x-y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\left(-\sqrt{3}\right)x+y=5,\left(-\sqrt{3}\right)x+\left(-\sqrt{3}\right)\left(-1\right)y=\left(-\sqrt{3}\right)\times 3
Kia ōrite ai a -\sqrt{3}x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -\sqrt{3}.
\left(-\sqrt{3}\right)x+y=5,\left(-\sqrt{3}\right)x+\sqrt{3}y=-3\sqrt{3}
Whakarūnātia.
\left(-\sqrt{3}\right)x+\sqrt{3}x+y+\left(-\sqrt{3}\right)y=5+3\sqrt{3}
Me tango \left(-\sqrt{3}\right)x+\sqrt{3}y=-3\sqrt{3} mai i \left(-\sqrt{3}\right)x+y=5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+\left(-\sqrt{3}\right)y=5+3\sqrt{3}
Tāpiri -\sqrt{3}x ki te \sqrt{3}x. Ka whakakore atu ngā kupu -\sqrt{3}x me \sqrt{3}x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(1-\sqrt{3}\right)y=5+3\sqrt{3}
Tāpiri y ki te -\sqrt{3}y.
\left(1-\sqrt{3}\right)y=3\sqrt{3}+5
Tāpiri 5 ki te 3\sqrt{3}.
y=-4\sqrt{3}-7
Whakawehea ngā taha e rua ki te 1-\sqrt{3}.
x-\left(-4\sqrt{3}-7\right)=3
Whakaurua te -4\sqrt{3}-7 mō y ki x-y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-4\sqrt{3}-4
Me tango 4\sqrt{3}+7 mai i ngā taha e rua o te whārite.
x=-4\sqrt{3}-4,y=-4\sqrt{3}-7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}