Whakaoti mō y, x
x=0
y=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-\frac{x}{3}=-3
Whakaarohia te whārite tuatahi. Tangohia te \frac{x}{3} mai i ngā taha e rua.
3y-x=-9
Whakareatia ngā taha e rua o te whārite ki te 3.
3y-x=-9,y+4x=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3y-x=-9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
3y=x-9
Me tāpiri x ki ngā taha e rua o te whārite.
y=\frac{1}{3}\left(x-9\right)
Whakawehea ngā taha e rua ki te 3.
y=\frac{1}{3}x-3
Whakareatia \frac{1}{3} ki te x-9.
\frac{1}{3}x-3+4x=-3
Whakakapia te \frac{x}{3}-3 mō te y ki tērā atu whārite, y+4x=-3.
\frac{13}{3}x-3=-3
Tāpiri \frac{x}{3} ki te 4x.
\frac{13}{3}x=0
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua o te whārite ki te \frac{13}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=-3
Whakaurua te 0 mō x ki y=\frac{1}{3}x-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-3,x=0
Kua oti te pūnaha te whakatau.
y-\frac{x}{3}=-3
Whakaarohia te whārite tuatahi. Tangohia te \frac{x}{3} mai i ngā taha e rua.
3y-x=-9
Whakareatia ngā taha e rua o te whārite ki te 3.
3y-x=-9,y+4x=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-9\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\1&4\end{matrix}\right))\left(\begin{matrix}3&-1\\1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-9\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\1&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-9\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-9\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-\left(-1\right)}&-\frac{-1}{3\times 4-\left(-1\right)}\\-\frac{1}{3\times 4-\left(-1\right)}&\frac{3}{3\times 4-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-9\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{13}&\frac{1}{13}\\-\frac{1}{13}&\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}-9\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{13}\left(-9\right)+\frac{1}{13}\left(-3\right)\\-\frac{1}{13}\left(-9\right)+\frac{3}{13}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\0\end{matrix}\right)
Mahia ngā tātaitanga.
y=-3,x=0
Tangohia ngā huānga poukapa y me x.
y-\frac{x}{3}=-3
Whakaarohia te whārite tuatahi. Tangohia te \frac{x}{3} mai i ngā taha e rua.
3y-x=-9
Whakareatia ngā taha e rua o te whārite ki te 3.
3y-x=-9,y+4x=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3y-x=-9,3y+3\times 4x=3\left(-3\right)
Kia ōrite ai a 3y me y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3y-x=-9,3y+12x=-9
Whakarūnātia.
3y-3y-x-12x=-9+9
Me tango 3y+12x=-9 mai i 3y-x=-9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-x-12x=-9+9
Tāpiri 3y ki te -3y. Ka whakakore atu ngā kupu 3y me -3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-13x=-9+9
Tāpiri -x ki te -12x.
-13x=0
Tāpiri -9 ki te 9.
x=0
Whakawehea ngā taha e rua ki te -13.
y=-3
Whakaurua te 0 mō x ki y+4x=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-3,x=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}