Whakaoti mō y, x
x = -\frac{11}{3} = -3\frac{2}{3} \approx -3.666666667
y = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
y=\frac{1}{2}x+\frac{3}{2}+3
Whakaarohia te whārite tuatahi. Whakawehea ia wā o x+3 ki te 2, kia riro ko \frac{1}{2}x+\frac{3}{2}.
y=\frac{1}{2}x+\frac{9}{2}
Tāpirihia te \frac{3}{2} ki te 3, ka \frac{9}{2}.
\frac{1}{2}x+\frac{9}{2}-2x=10
Whakakapia te \frac{9+x}{2} mō te y ki tērā atu whārite, y-2x=10.
-\frac{3}{2}x+\frac{9}{2}=10
Tāpiri \frac{x}{2} ki te -2x.
-\frac{3}{2}x=\frac{11}{2}
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.
x=-\frac{11}{3}
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=\frac{1}{2}\left(-\frac{11}{3}\right)+\frac{9}{2}
Whakaurua te -\frac{11}{3} mō x ki y=\frac{1}{2}x+\frac{9}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-\frac{11}{6}+\frac{9}{2}
Whakareatia \frac{1}{2} ki te -\frac{11}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{8}{3}
Tāpiri \frac{9}{2} ki te -\frac{11}{6} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{8}{3},x=-\frac{11}{3}
Kua oti te pūnaha te whakatau.
y=\frac{1}{2}x+\frac{3}{2}+3
Whakaarohia te whārite tuatahi. Whakawehea ia wā o x+3 ki te 2, kia riro ko \frac{1}{2}x+\frac{3}{2}.
y=\frac{1}{2}x+\frac{9}{2}
Tāpirihia te \frac{3}{2} ki te 3, ka \frac{9}{2}.
y-\frac{1}{2}x=\frac{9}{2}
Tangohia te \frac{1}{2}x mai i ngā taha e rua.
y-2x=10
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y-\frac{1}{2}x=\frac{9}{2},y-2x=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right))\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right))\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right))\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-\frac{1}{2}\right)}&-\frac{-\frac{1}{2}}{-2-\left(-\frac{1}{2}\right)}\\-\frac{1}{-2-\left(-\frac{1}{2}\right)}&\frac{1}{-2-\left(-\frac{1}{2}\right)}\end{matrix}\right)\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}&-\frac{1}{3}\\\frac{2}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}\frac{9}{2}\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}\times \frac{9}{2}-\frac{1}{3}\times 10\\\frac{2}{3}\times \frac{9}{2}-\frac{2}{3}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\\-\frac{11}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
y=\frac{8}{3},x=-\frac{11}{3}
Tangohia ngā huānga poukapa y me x.
y=\frac{1}{2}x+\frac{3}{2}+3
Whakaarohia te whārite tuatahi. Whakawehea ia wā o x+3 ki te 2, kia riro ko \frac{1}{2}x+\frac{3}{2}.
y=\frac{1}{2}x+\frac{9}{2}
Tāpirihia te \frac{3}{2} ki te 3, ka \frac{9}{2}.
y-\frac{1}{2}x=\frac{9}{2}
Tangohia te \frac{1}{2}x mai i ngā taha e rua.
y-2x=10
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y-\frac{1}{2}x=\frac{9}{2},y-2x=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y-\frac{1}{2}x+2x=\frac{9}{2}-10
Me tango y-2x=10 mai i y-\frac{1}{2}x=\frac{9}{2} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-\frac{1}{2}x+2x=\frac{9}{2}-10
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{3}{2}x=\frac{9}{2}-10
Tāpiri -\frac{x}{2} ki te 2x.
\frac{3}{2}x=-\frac{11}{2}
Tāpiri \frac{9}{2} ki te -10.
x=-\frac{11}{3}
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y-2\left(-\frac{11}{3}\right)=10
Whakaurua te -\frac{11}{3} mō x ki y-2x=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y+\frac{22}{3}=10
Whakareatia -2 ki te -\frac{11}{3}.
y=\frac{8}{3}
Me tango \frac{22}{3} mai i ngā taha e rua o te whārite.
y=\frac{8}{3},x=-\frac{11}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}