Whakaoti mō y, x
x = \frac{52024}{53} = 981\frac{31}{53} \approx 981.58490566
y = \frac{168940}{53} = 3187\frac{29}{53} \approx 3187.547169811
Graph
Tohaina
Kua tāruatia ki te papatopenga
y=-\frac{2}{7}x+3468
Whakaarohia te whārite tuatahi. Ka taea te hautanga \frac{2}{-7} te tuhi anō ko -\frac{2}{7} mā te tango i te tohu tōraro.
-\frac{2}{7}x+3468-\frac{7}{2}x=-248
Whakakapia te -\frac{2x}{7}+3468 mō te y ki tērā atu whārite, y-\frac{7}{2}x=-248.
-\frac{53}{14}x+3468=-248
Tāpiri -\frac{2x}{7} ki te -\frac{7x}{2}.
-\frac{53}{14}x=-3716
Me tango 3468 mai i ngā taha e rua o te whārite.
x=\frac{52024}{53}
Whakawehea ngā taha e rua o te whārite ki te -\frac{53}{14}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=-\frac{2}{7}\times \frac{52024}{53}+3468
Whakaurua te \frac{52024}{53} mō x ki y=-\frac{2}{7}x+3468. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-\frac{14864}{53}+3468
Whakareatia -\frac{2}{7} ki te \frac{52024}{53} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{168940}{53}
Tāpiri 3468 ki te -\frac{14864}{53}.
y=\frac{168940}{53},x=\frac{52024}{53}
Kua oti te pūnaha te whakatau.
y=-\frac{2}{7}x+3468
Whakaarohia te whārite tuatahi. Ka taea te hautanga \frac{2}{-7} te tuhi anō ko -\frac{2}{7} mā te tango i te tohu tōraro.
y+\frac{2}{7}x=3468
Me tāpiri te \frac{2}{7}x ki ngā taha e rua.
y-\frac{7}{2}x=-248
Whakaarohia te whārite tuarua. Tangohia te \frac{7}{2}x mai i ngā taha e rua.
y+\frac{2}{7}x=3468,y-\frac{7}{2}x=-248
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&\frac{2}{7}\\1&-\frac{7}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3468\\-248\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&\frac{2}{7}\\1&-\frac{7}{2}\end{matrix}\right))\left(\begin{matrix}1&\frac{2}{7}\\1&-\frac{7}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{2}{7}\\1&-\frac{7}{2}\end{matrix}\right))\left(\begin{matrix}3468\\-248\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&\frac{2}{7}\\1&-\frac{7}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{2}{7}\\1&-\frac{7}{2}\end{matrix}\right))\left(\begin{matrix}3468\\-248\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{2}{7}\\1&-\frac{7}{2}\end{matrix}\right))\left(\begin{matrix}3468\\-248\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{7}{2}}{-\frac{7}{2}-\frac{2}{7}}&-\frac{\frac{2}{7}}{-\frac{7}{2}-\frac{2}{7}}\\-\frac{1}{-\frac{7}{2}-\frac{2}{7}}&\frac{1}{-\frac{7}{2}-\frac{2}{7}}\end{matrix}\right)\left(\begin{matrix}3468\\-248\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{49}{53}&\frac{4}{53}\\\frac{14}{53}&-\frac{14}{53}\end{matrix}\right)\left(\begin{matrix}3468\\-248\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{49}{53}\times 3468+\frac{4}{53}\left(-248\right)\\\frac{14}{53}\times 3468-\frac{14}{53}\left(-248\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{168940}{53}\\\frac{52024}{53}\end{matrix}\right)
Mahia ngā tātaitanga.
y=\frac{168940}{53},x=\frac{52024}{53}
Tangohia ngā huānga poukapa y me x.
y=-\frac{2}{7}x+3468
Whakaarohia te whārite tuatahi. Ka taea te hautanga \frac{2}{-7} te tuhi anō ko -\frac{2}{7} mā te tango i te tohu tōraro.
y+\frac{2}{7}x=3468
Me tāpiri te \frac{2}{7}x ki ngā taha e rua.
y-\frac{7}{2}x=-248
Whakaarohia te whārite tuarua. Tangohia te \frac{7}{2}x mai i ngā taha e rua.
y+\frac{2}{7}x=3468,y-\frac{7}{2}x=-248
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+\frac{2}{7}x+\frac{7}{2}x=3468+248
Me tango y-\frac{7}{2}x=-248 mai i y+\frac{2}{7}x=3468 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{2}{7}x+\frac{7}{2}x=3468+248
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{53}{14}x=3468+248
Tāpiri \frac{2x}{7} ki te \frac{7x}{2}.
\frac{53}{14}x=3716
Tāpiri 3468 ki te 248.
x=\frac{52024}{53}
Whakawehea ngā taha e rua o te whārite ki te \frac{53}{14}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y-\frac{7}{2}\times \frac{52024}{53}=-248
Whakaurua te \frac{52024}{53} mō x ki y-\frac{7}{2}x=-248. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y-\frac{182084}{53}=-248
Whakareatia -\frac{7}{2} ki te \frac{52024}{53} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{168940}{53}
Me tāpiri \frac{182084}{53} ki ngā taha e rua o te whārite.
y=\frac{168940}{53},x=\frac{52024}{53}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}