Whakaoti mō y, x
x=-1
y=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-\frac{1}{2}x=1
Whakaarohia te whārite tuatahi. Tangohia te \frac{1}{2}x mai i ngā taha e rua.
y-\frac{1}{2}x=1,2y+3x=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-\frac{1}{2}x=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=\frac{1}{2}x+1
Me tāpiri \frac{x}{2} ki ngā taha e rua o te whārite.
2\left(\frac{1}{2}x+1\right)+3x=-2
Whakakapia te \frac{x}{2}+1 mō te y ki tērā atu whārite, 2y+3x=-2.
x+2+3x=-2
Whakareatia 2 ki te \frac{x}{2}+1.
4x+2=-2
Tāpiri x ki te 3x.
4x=-4
Me tango 2 mai i ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 4.
y=\frac{1}{2}\left(-1\right)+1
Whakaurua te -1 mō x ki y=\frac{1}{2}x+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-\frac{1}{2}+1
Whakareatia \frac{1}{2} ki te -1.
y=\frac{1}{2}
Tāpiri 1 ki te -\frac{1}{2}.
y=\frac{1}{2},x=-1
Kua oti te pūnaha te whakatau.
y-\frac{1}{2}x=1
Whakaarohia te whārite tuatahi. Tangohia te \frac{1}{2}x mai i ngā taha e rua.
y-\frac{1}{2}x=1,2y+3x=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-\frac{1}{2}\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-\frac{1}{2}\\2&3\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{2}\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\2&3\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-\frac{1}{2}\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\2&3\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\2&3\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-\frac{1}{2}\times 2\right)}&-\frac{-\frac{1}{2}}{3-\left(-\frac{1}{2}\times 2\right)}\\-\frac{2}{3-\left(-\frac{1}{2}\times 2\right)}&\frac{1}{3-\left(-\frac{1}{2}\times 2\right)}\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{8}\\-\frac{1}{2}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}+\frac{1}{8}\left(-2\right)\\-\frac{1}{2}+\frac{1}{4}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
y=\frac{1}{2},x=-1
Tangohia ngā huānga poukapa y me x.
y-\frac{1}{2}x=1
Whakaarohia te whārite tuatahi. Tangohia te \frac{1}{2}x mai i ngā taha e rua.
y-\frac{1}{2}x=1,2y+3x=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2y+2\left(-\frac{1}{2}\right)x=2,2y+3x=-2
Kia ōrite ai a y me 2y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2y-x=2,2y+3x=-2
Whakarūnātia.
2y-2y-x-3x=2+2
Me tango 2y+3x=-2 mai i 2y-x=2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-x-3x=2+2
Tāpiri 2y ki te -2y. Ka whakakore atu ngā kupu 2y me -2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4x=2+2
Tāpiri -x ki te -3x.
-4x=4
Tāpiri 2 ki te 2.
x=-1
Whakawehea ngā taha e rua ki te -4.
2y+3\left(-1\right)=-2
Whakaurua te -1 mō x ki 2y+3x=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
2y-3=-2
Whakareatia 3 ki te -1.
2y=1
Me tāpiri 3 ki ngā taha e rua o te whārite.
y=\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
y=\frac{1}{2},x=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}