Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+3x=56,4y+x=34
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+3x=56
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-3x+56
Me tango 3x mai i ngā taha e rua o te whārite.
4\left(-3x+56\right)+x=34
Whakakapia te -3x+56 mō te y ki tērā atu whārite, 4y+x=34.
-12x+224+x=34
Whakareatia 4 ki te -3x+56.
-11x+224=34
Tāpiri -12x ki te x.
-11x=-190
Me tango 224 mai i ngā taha e rua o te whārite.
x=\frac{190}{11}
Whakawehea ngā taha e rua ki te -11.
y=-3\times \frac{190}{11}+56
Whakaurua te \frac{190}{11} mō x ki y=-3x+56. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-\frac{570}{11}+56
Whakareatia -3 ki te \frac{190}{11}.
y=\frac{46}{11}
Tāpiri 56 ki te -\frac{570}{11}.
y=\frac{46}{11},x=\frac{190}{11}
Kua oti te pūnaha te whakatau.
y+3x=56,4y+x=34
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&3\\4&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}56\\34\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&3\\4&1\end{matrix}\right))\left(\begin{matrix}1&3\\4&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\4&1\end{matrix}\right))\left(\begin{matrix}56\\34\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&3\\4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\4&1\end{matrix}\right))\left(\begin{matrix}56\\34\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\4&1\end{matrix}\right))\left(\begin{matrix}56\\34\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3\times 4}&-\frac{3}{1-3\times 4}\\-\frac{4}{1-3\times 4}&\frac{1}{1-3\times 4}\end{matrix}\right)\left(\begin{matrix}56\\34\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{11}&\frac{3}{11}\\\frac{4}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}56\\34\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{11}\times 56+\frac{3}{11}\times 34\\\frac{4}{11}\times 56-\frac{1}{11}\times 34\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{46}{11}\\\frac{190}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
y=\frac{46}{11},x=\frac{190}{11}
Tangohia ngā huānga poukapa y me x.
y+3x=56,4y+x=34
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4y+4\times 3x=4\times 56,4y+x=34
Kia ōrite ai a y me 4y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
4y+12x=224,4y+x=34
Whakarūnātia.
4y-4y+12x-x=224-34
Me tango 4y+x=34 mai i 4y+12x=224 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12x-x=224-34
Tāpiri 4y ki te -4y. Ka whakakore atu ngā kupu 4y me -4y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11x=224-34
Tāpiri 12x ki te -x.
11x=190
Tāpiri 224 ki te -34.
x=\frac{190}{11}
Whakawehea ngā taha e rua ki te 11.
4y+\frac{190}{11}=34
Whakaurua te \frac{190}{11} mō x ki 4y+x=34. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
4y=\frac{184}{11}
Me tango \frac{190}{11} mai i ngā taha e rua o te whārite.
y=\frac{46}{11}
Whakawehea ngā taha e rua ki te 4.
y=\frac{46}{11},x=\frac{190}{11}
Kua oti te pūnaha te whakatau.