Whakaoti mō y, x
x=\frac{100}{247}\approx 0.4048583
y = \frac{8615}{247} = 34\frac{217}{247} \approx 34.87854251
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+25x=45,y+0.3x=35
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+25x=45
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-25x+45
Me tango 25x mai i ngā taha e rua o te whārite.
-25x+45+0.3x=35
Whakakapia te -25x+45 mō te y ki tērā atu whārite, y+0.3x=35.
-24.7x+45=35
Tāpiri -25x ki te \frac{3x}{10}.
-24.7x=-10
Me tango 45 mai i ngā taha e rua o te whārite.
x=\frac{100}{247}
Whakawehea ngā taha e rua o te whārite ki te -24.7, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=-25\times \frac{100}{247}+45
Whakaurua te \frac{100}{247} mō x ki y=-25x+45. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-\frac{2500}{247}+45
Whakareatia -25 ki te \frac{100}{247}.
y=\frac{8615}{247}
Tāpiri 45 ki te -\frac{2500}{247}.
y=\frac{8615}{247},x=\frac{100}{247}
Kua oti te pūnaha te whakatau.
y+25x=45,y+0.3x=35
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}45\\35\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right))\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right))\left(\begin{matrix}45\\35\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&25\\1&0.3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right))\left(\begin{matrix}45\\35\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right))\left(\begin{matrix}45\\35\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{0.3}{0.3-25}&-\frac{25}{0.3-25}\\-\frac{1}{0.3-25}&\frac{1}{0.3-25}\end{matrix}\right)\left(\begin{matrix}45\\35\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{247}&\frac{250}{247}\\\frac{10}{247}&-\frac{10}{247}\end{matrix}\right)\left(\begin{matrix}45\\35\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{247}\times 45+\frac{250}{247}\times 35\\\frac{10}{247}\times 45-\frac{10}{247}\times 35\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8615}{247}\\\frac{100}{247}\end{matrix}\right)
Mahia ngā tātaitanga.
y=\frac{8615}{247},x=\frac{100}{247}
Tangohia ngā huānga poukapa y me x.
y+25x=45,y+0.3x=35
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+25x-0.3x=45-35
Me tango y+0.3x=35 mai i y+25x=45 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
25x-0.3x=45-35
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
24.7x=45-35
Tāpiri 25x ki te -\frac{3x}{10}.
24.7x=10
Tāpiri 45 ki te -35.
x=\frac{100}{247}
Whakawehea ngā taha e rua o te whārite ki te 24.7, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y+0.3\times \frac{100}{247}=35
Whakaurua te \frac{100}{247} mō x ki y+0.3x=35. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y+\frac{30}{247}=35
Whakareatia 0.3 ki te \frac{100}{247} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{8615}{247}
Me tango \frac{30}{247} mai i ngā taha e rua o te whārite.
y=\frac{8615}{247},x=\frac{100}{247}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}