Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+y=x_{6}
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3y+x=x_{3}
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x+y=x_{6},x+3y=x_{3}
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y=x_{6}
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-y+x_{6}
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-y+x_{6}\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y+\frac{x_{6}}{3}
Whakareatia \frac{1}{3} ki te -y+x_{6}.
-\frac{1}{3}y+\frac{x_{6}}{3}+3y=x_{3}
Whakakapia te \frac{-y+x_{6}}{3} mō te x ki tērā atu whārite, x+3y=x_{3}.
\frac{8}{3}y+\frac{x_{6}}{3}=x_{3}
Tāpiri -\frac{y}{3} ki te 3y.
\frac{8}{3}y=-\frac{x_{6}}{3}+x_{3}
Me tango \frac{x_{6}}{3} mai i ngā taha e rua o te whārite.
y=\frac{3x_{3}-x_{6}}{8}
Whakawehea ngā taha e rua o te whārite ki te \frac{8}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{3}\times \frac{3x_{3}-x_{6}}{8}+\frac{x_{6}}{3}
Whakaurua te \frac{3x_{3}-x_{6}}{8} mō y ki x=-\frac{1}{3}y+\frac{x_{6}}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{x_{6}}{24}-\frac{x_{3}}{8}+\frac{x_{6}}{3}
Whakareatia -\frac{1}{3} ki te \frac{3x_{3}-x_{6}}{8}.
x=\frac{3x_{6}-x_{3}}{8}
Tāpiri \frac{x_{6}}{3} ki te -\frac{x_{3}}{8}+\frac{x_{6}}{24}.
x=\frac{3x_{6}-x_{3}}{8},y=\frac{3x_{3}-x_{6}}{8}
Kua oti te pūnaha te whakatau.
3x+y=x_{6}
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3y+x=x_{3}
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x+y=x_{6},x+3y=x_{3}
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}x_{6}\\x_{3}\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\1&3\end{matrix}\right))\left(\begin{matrix}3&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&3\end{matrix}\right))\left(\begin{matrix}x_{6}\\x_{3}\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&3\end{matrix}\right))\left(\begin{matrix}x_{6}\\x_{3}\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&3\end{matrix}\right))\left(\begin{matrix}x_{6}\\x_{3}\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-1}&-\frac{1}{3\times 3-1}\\-\frac{1}{3\times 3-1}&\frac{3}{3\times 3-1}\end{matrix}\right)\left(\begin{matrix}x_{6}\\x_{3}\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&-\frac{1}{8}\\-\frac{1}{8}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}x_{6}\\x_{3}\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}x_{6}-\frac{1}{8}x_{3}\\-\frac{1}{8}x_{6}+\frac{3}{8}x_{3}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3x_{6}-x_{3}}{8}\\\frac{3x_{3}-x_{6}}{8}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{3x_{6}-x_{3}}{8},y=\frac{3x_{3}-x_{6}}{8}
Tangohia ngā huānga poukapa x me y.
3x+y=x_{6}
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3y+x=x_{3}
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x+y=x_{6},x+3y=x_{3}
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+y=x_{6},3x+3\times 3y=3x_{3}
Kia ōrite ai a 3x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3x+y=x_{6},3x+9y=3x_{3}
Whakarūnātia.
3x-3x+y-9y=x_{6}-3x_{3}
Me tango 3x+9y=3x_{3} mai i 3x+y=x_{6} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-9y=x_{6}-3x_{3}
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-8y=x_{6}-3x_{3}
Tāpiri y ki te -9y.
y=\frac{3x_{3}-x_{6}}{8}
Whakawehea ngā taha e rua ki te -8.
x+3\times \frac{3x_{3}-x_{6}}{8}=x_{3}
Whakaurua te \frac{-x_{6}+3x_{3}}{8} mō y ki x+3y=x_{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+\frac{9x_{3}-3x_{6}}{8}=x_{3}
Whakareatia 3 ki te \frac{-x_{6}+3x_{3}}{8}.
x=\frac{3x_{6}-x_{3}}{8}
Me tango \frac{-3x_{6}+9x_{3}}{8} mai i ngā taha e rua o te whārite.
x=\frac{3x_{6}-x_{3}}{8},y=\frac{3x_{3}-x_{6}}{8}
Kua oti te pūnaha te whakatau.