Whakaoti mō x_1, x_2
x_{1}=\frac{4\left(a+1\right)}{3}
x_{2}=\frac{a+4}{3}
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{4}x_{1}-1=a,x_{1}-x_{2}=a
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{3}{4}x_{1}-1=a
Tīpakohia tētahi o ngā whārite e rua he māmā ake ki te whakaoti mō te x_{1} mā te wehe i te x_{1} i te taha mauī o te tohu ōrite.
\frac{3}{4}x_{1}=a+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
x_{1}=\frac{4a+4}{3}
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
\frac{4a+4}{3}-x_{2}=a
Whakakapia te \frac{4a+4}{3} mō te x_{1} ki tērā atu whārite, x_{1}-x_{2}=a.
-x_{2}=\frac{-a-4}{3}
Me tango \frac{4+4a}{3} mai i ngā taha e rua o te whārite.
x_{2}=\frac{a+4}{3}
Whakawehea ngā taha e rua ki te -1.
x_{1}=\frac{4a+4}{3},x_{2}=\frac{a+4}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}