Whakaoti mō x, y
x = \frac{299}{19} = 15\frac{14}{19} \approx 15.736842105
y = -\frac{100}{19} = -5\frac{5}{19} \approx -5.263157895
Graph
Tohaina
Kua tāruatia ki te papatopenga
20x-y=320
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 20.
x-y=21,20x-y=320
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=21
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+21
Me tāpiri y ki ngā taha e rua o te whārite.
20\left(y+21\right)-y=320
Whakakapia te y+21 mō te x ki tērā atu whārite, 20x-y=320.
20y+420-y=320
Whakareatia 20 ki te y+21.
19y+420=320
Tāpiri 20y ki te -y.
19y=-100
Me tango 420 mai i ngā taha e rua o te whārite.
y=-\frac{100}{19}
Whakawehea ngā taha e rua ki te 19.
x=-\frac{100}{19}+21
Whakaurua te -\frac{100}{19} mō y ki x=y+21. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{299}{19}
Tāpiri 21 ki te -\frac{100}{19}.
x=\frac{299}{19},y=-\frac{100}{19}
Kua oti te pūnaha te whakatau.
20x-y=320
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 20.
x-y=21,20x-y=320
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\20&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}21\\320\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\20&-1\end{matrix}\right))\left(\begin{matrix}1&-1\\20&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\20&-1\end{matrix}\right))\left(\begin{matrix}21\\320\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\20&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\20&-1\end{matrix}\right))\left(\begin{matrix}21\\320\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\20&-1\end{matrix}\right))\left(\begin{matrix}21\\320\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-20\right)}&-\frac{-1}{-1-\left(-20\right)}\\-\frac{20}{-1-\left(-20\right)}&\frac{1}{-1-\left(-20\right)}\end{matrix}\right)\left(\begin{matrix}21\\320\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{19}&\frac{1}{19}\\-\frac{20}{19}&\frac{1}{19}\end{matrix}\right)\left(\begin{matrix}21\\320\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{19}\times 21+\frac{1}{19}\times 320\\-\frac{20}{19}\times 21+\frac{1}{19}\times 320\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{299}{19}\\-\frac{100}{19}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{299}{19},y=-\frac{100}{19}
Tangohia ngā huānga poukapa x me y.
20x-y=320
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 20.
x-y=21,20x-y=320
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-20x-y+y=21-320
Me tango 20x-y=320 mai i x-y=21 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x-20x=21-320
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-19x=21-320
Tāpiri x ki te -20x.
-19x=-299
Tāpiri 21 ki te -320.
x=\frac{299}{19}
Whakawehea ngā taha e rua ki te -19.
20\times \frac{299}{19}-y=320
Whakaurua te \frac{299}{19} mō x ki 20x-y=320. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
\frac{5980}{19}-y=320
Whakareatia 20 ki te \frac{299}{19}.
-y=\frac{100}{19}
Me tango \frac{5980}{19} mai i ngā taha e rua o te whārite.
y=-\frac{100}{19}
Whakawehea ngā taha e rua ki te -1.
x=\frac{299}{19},y=-\frac{100}{19}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}