Whakaoti mō x, y
x=37
y=21
Graph
Tohaina
Kua tāruatia ki te papatopenga
2y-x=5
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
x-y=16,-x+2y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=16
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+16
Me tāpiri y ki ngā taha e rua o te whārite.
-\left(y+16\right)+2y=5
Whakakapia te y+16 mō te x ki tērā atu whārite, -x+2y=5.
-y-16+2y=5
Whakareatia -1 ki te y+16.
y-16=5
Tāpiri -y ki te 2y.
y=21
Me tāpiri 16 ki ngā taha e rua o te whārite.
x=21+16
Whakaurua te 21 mō y ki x=y+16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=37
Tāpiri 16 ki te 21.
x=37,y=21
Kua oti te pūnaha te whakatau.
2y-x=5
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
x-y=16,-x+2y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\-1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-\left(-1\right)\right)}&-\frac{-1}{2-\left(-\left(-1\right)\right)}\\-\frac{-1}{2-\left(-\left(-1\right)\right)}&\frac{1}{2-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}16\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&1\\1&1\end{matrix}\right)\left(\begin{matrix}16\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 16+5\\16+5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}37\\21\end{matrix}\right)
Mahia ngā tātaitanga.
x=37,y=21
Tangohia ngā huānga poukapa x me y.
2y-x=5
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
x-y=16,-x+2y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-x-\left(-y\right)=-16,-x+2y=5
Kia ōrite ai a x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-x+y=-16,-x+2y=5
Whakarūnātia.
-x+x+y-2y=-16-5
Me tango -x+2y=5 mai i -x+y=-16 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-2y=-16-5
Tāpiri -x ki te x. Ka whakakore atu ngā kupu -x me x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=-16-5
Tāpiri y ki te -2y.
-y=-21
Tāpiri -16 ki te -5.
y=21
Whakawehea ngā taha e rua ki te -1.
-x+2\times 21=5
Whakaurua te 21 mō y ki -x+2y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x+42=5
Whakareatia 2 ki te 21.
-x=-37
Me tango 42 mai i ngā taha e rua o te whārite.
x=37
Whakawehea ngā taha e rua ki te -1.
x=37,y=21
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}