Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+4x=4
Whakaarohia te whārite tuarua. Me tāpiri te 4x ki ngā taha e rua.
x-y=1,4x+y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+1
Me tāpiri y ki ngā taha e rua o te whārite.
4\left(y+1\right)+y=4
Whakakapia te y+1 mō te x ki tērā atu whārite, 4x+y=4.
4y+4+y=4
Whakareatia 4 ki te y+1.
5y+4=4
Tāpiri 4y ki te y.
5y=0
Me tango 4 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua ki te 5.
x=1
Whakaurua te 0 mō y ki x=y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1,y=0
Kua oti te pūnaha te whakatau.
y+4x=4
Whakaarohia te whārite tuarua. Me tāpiri te 4x ki ngā taha e rua.
x-y=1,4x+y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\4&1\end{matrix}\right))\left(\begin{matrix}1&-1\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-4\right)}&-\frac{-1}{1-\left(-4\right)}\\-\frac{4}{1-\left(-4\right)}&\frac{1}{1-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\-\frac{4}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}+\frac{1}{5}\times 4\\-\frac{4}{5}+\frac{1}{5}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=0
Tangohia ngā huānga poukapa x me y.
y+4x=4
Whakaarohia te whārite tuarua. Me tāpiri te 4x ki ngā taha e rua.
x-y=1,4x+y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x+4\left(-1\right)y=4,4x+y=4
Kia ōrite ai a x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
4x-4y=4,4x+y=4
Whakarūnātia.
4x-4x-4y-y=4-4
Me tango 4x+y=4 mai i 4x-4y=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y-y=4-4
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=4-4
Tāpiri -4y ki te -y.
-5y=0
Tāpiri 4 ki te -4.
y=0
Whakawehea ngā taha e rua ki te -5.
4x=4
Whakaurua te 0 mō y ki 4x+y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1
Whakawehea ngā taha e rua ki te 4.
x=1,y=0
Kua oti te pūnaha te whakatau.