Whakaoti mō x, y
x=-4
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-y=-2,11x-4y=-36
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y-2
Me tāpiri y ki ngā taha e rua o te whārite.
11\left(y-2\right)-4y=-36
Whakakapia te y-2 mō te x ki tērā atu whārite, 11x-4y=-36.
11y-22-4y=-36
Whakareatia 11 ki te y-2.
7y-22=-36
Tāpiri 11y ki te -4y.
7y=-14
Me tāpiri 22 ki ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te 7.
x=-2-2
Whakaurua te -2 mō y ki x=y-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-4
Tāpiri -2 ki te -2.
x=-4,y=-2
Kua oti te pūnaha te whakatau.
x-y=-2,11x-4y=-36
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\11&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-36\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\11&-4\end{matrix}\right))\left(\begin{matrix}1&-1\\11&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\11&-4\end{matrix}\right))\left(\begin{matrix}-2\\-36\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\11&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\11&-4\end{matrix}\right))\left(\begin{matrix}-2\\-36\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\11&-4\end{matrix}\right))\left(\begin{matrix}-2\\-36\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-\left(-11\right)}&-\frac{-1}{-4-\left(-11\right)}\\-\frac{11}{-4-\left(-11\right)}&\frac{1}{-4-\left(-11\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-36\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7}&\frac{1}{7}\\-\frac{11}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-2\\-36\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7}\left(-2\right)+\frac{1}{7}\left(-36\right)\\-\frac{11}{7}\left(-2\right)+\frac{1}{7}\left(-36\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-4,y=-2
Tangohia ngā huānga poukapa x me y.
x-y=-2,11x-4y=-36
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
11x+11\left(-1\right)y=11\left(-2\right),11x-4y=-36
Kia ōrite ai a x me 11x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 11 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
11x-11y=-22,11x-4y=-36
Whakarūnātia.
11x-11x-11y+4y=-22+36
Me tango 11x-4y=-36 mai i 11x-11y=-22 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-11y+4y=-22+36
Tāpiri 11x ki te -11x. Ka whakakore atu ngā kupu 11x me -11x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=-22+36
Tāpiri -11y ki te 4y.
-7y=14
Tāpiri -22 ki te 36.
y=-2
Whakawehea ngā taha e rua ki te -7.
11x-4\left(-2\right)=-36
Whakaurua te -2 mō y ki 11x-4y=-36. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
11x+8=-36
Whakareatia -4 ki te -2.
11x=-44
Me tango 8 mai i ngā taha e rua o te whārite.
x=-4
Whakawehea ngā taha e rua ki te 11.
x=-4,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}