Whakaoti mō x, y
x=14
y=46
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-30=y-6
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 5.
5x-30-y=-6
Tangohia te y mai i ngā taha e rua.
5x-y=-6+30
Me tāpiri te 30 ki ngā taha e rua.
5x-y=24
Tāpirihia te -6 ki te 30, ka 24.
2x+18=y
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
2x+18-y=0
Tangohia te y mai i ngā taha e rua.
2x-y=-18
Tangohia te 18 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
5x-y=24,2x-y=-18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-y=24
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=y+24
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(y+24\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{1}{5}y+\frac{24}{5}
Whakareatia \frac{1}{5} ki te y+24.
2\left(\frac{1}{5}y+\frac{24}{5}\right)-y=-18
Whakakapia te \frac{24+y}{5} mō te x ki tērā atu whārite, 2x-y=-18.
\frac{2}{5}y+\frac{48}{5}-y=-18
Whakareatia 2 ki te \frac{24+y}{5}.
-\frac{3}{5}y+\frac{48}{5}=-18
Tāpiri \frac{2y}{5} ki te -y.
-\frac{3}{5}y=-\frac{138}{5}
Me tango \frac{48}{5} mai i ngā taha e rua o te whārite.
y=46
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{5}\times 46+\frac{24}{5}
Whakaurua te 46 mō y ki x=\frac{1}{5}y+\frac{24}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{46+24}{5}
Whakareatia \frac{1}{5} ki te 46.
x=14
Tāpiri \frac{24}{5} ki te \frac{46}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=14,y=46
Kua oti te pūnaha te whakatau.
5x-30=y-6
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 5.
5x-30-y=-6
Tangohia te y mai i ngā taha e rua.
5x-y=-6+30
Me tāpiri te 30 ki ngā taha e rua.
5x-y=24
Tāpirihia te -6 ki te 30, ka 24.
2x+18=y
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
2x+18-y=0
Tangohia te y mai i ngā taha e rua.
2x-y=-18
Tangohia te 18 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
5x-y=24,2x-y=-18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\-18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}24\\-18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-1\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}24\\-18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}24\\-18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-\left(-2\right)}&-\frac{-1}{5\left(-1\right)-\left(-2\right)}\\-\frac{2}{5\left(-1\right)-\left(-2\right)}&\frac{5}{5\left(-1\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}24\\-18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\\frac{2}{3}&-\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}24\\-18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 24-\frac{1}{3}\left(-18\right)\\\frac{2}{3}\times 24-\frac{5}{3}\left(-18\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\46\end{matrix}\right)
Mahia ngā tātaitanga.
x=14,y=46
Tangohia ngā huānga poukapa x me y.
5x-30=y-6
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 5.
5x-30-y=-6
Tangohia te y mai i ngā taha e rua.
5x-y=-6+30
Me tāpiri te 30 ki ngā taha e rua.
5x-y=24
Tāpirihia te -6 ki te 30, ka 24.
2x+18=y
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
2x+18-y=0
Tangohia te y mai i ngā taha e rua.
2x-y=-18
Tangohia te 18 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
5x-y=24,2x-y=-18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x-2x-y+y=24+18
Me tango 2x-y=-18 mai i 5x-y=24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5x-2x=24+18
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3x=24+18
Tāpiri 5x ki te -2x.
3x=42
Tāpiri 24 ki te 18.
x=14
Whakawehea ngā taha e rua ki te 3.
2\times 14-y=-18
Whakaurua te 14 mō x ki 2x-y=-18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
28-y=-18
Whakareatia 2 ki te 14.
-y=-46
Me tango 28 mai i ngā taha e rua o te whārite.
y=46
Whakawehea ngā taha e rua ki te -1.
x=14,y=46
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}