Whakaoti mō x, y
x=-2
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-5y=8,3x+y=-8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-5y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=5y+8
Me tāpiri 5y ki ngā taha e rua o te whārite.
3\left(5y+8\right)+y=-8
Whakakapia te 5y+8 mō te x ki tērā atu whārite, 3x+y=-8.
15y+24+y=-8
Whakareatia 3 ki te 5y+8.
16y+24=-8
Tāpiri 15y ki te y.
16y=-32
Me tango 24 mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te 16.
x=5\left(-2\right)+8
Whakaurua te -2 mō y ki x=5y+8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-10+8
Whakareatia 5 ki te -2.
x=-2
Tāpiri 8 ki te -10.
x=-2,y=-2
Kua oti te pūnaha te whakatau.
x-5y=8,3x+y=-8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-5\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-5\\3&1\end{matrix}\right))\left(\begin{matrix}1&-5\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\3&1\end{matrix}\right))\left(\begin{matrix}8\\-8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-5\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\3&1\end{matrix}\right))\left(\begin{matrix}8\\-8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\3&1\end{matrix}\right))\left(\begin{matrix}8\\-8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-5\times 3\right)}&-\frac{-5}{1-\left(-5\times 3\right)}\\-\frac{3}{1-\left(-5\times 3\right)}&\frac{1}{1-\left(-5\times 3\right)}\end{matrix}\right)\left(\begin{matrix}8\\-8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{16}&\frac{5}{16}\\-\frac{3}{16}&\frac{1}{16}\end{matrix}\right)\left(\begin{matrix}8\\-8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{16}\times 8+\frac{5}{16}\left(-8\right)\\-\frac{3}{16}\times 8+\frac{1}{16}\left(-8\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=-2
Tangohia ngā huānga poukapa x me y.
x-5y=8,3x+y=-8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+3\left(-5\right)y=3\times 8,3x+y=-8
Kia ōrite ai a x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3x-15y=24,3x+y=-8
Whakarūnātia.
3x-3x-15y-y=24+8
Me tango 3x+y=-8 mai i 3x-15y=24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-15y-y=24+8
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-16y=24+8
Tāpiri -15y ki te -y.
-16y=32
Tāpiri 24 ki te 8.
y=-2
Whakawehea ngā taha e rua ki te -16.
3x-2=-8
Whakaurua te -2 mō y ki 3x+y=-8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=-6
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te 3.
x=-2,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}