Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-4y=-8,x-2y=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-4y=-8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=4y-8
Me tāpiri 4y ki ngā taha e rua o te whārite.
4y-8-2y=-2
Whakakapia te -8+4y mō te x ki tērā atu whārite, x-2y=-2.
2y-8=-2
Tāpiri 4y ki te -2y.
2y=6
Me tāpiri 8 ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te 2.
x=4\times 3-8
Whakaurua te 3 mō y ki x=4y-8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=12-8
Whakareatia 4 ki te 3.
x=4
Tāpiri -8 ki te 12.
x=4,y=3
Kua oti te pūnaha te whakatau.
x-4y=-8,x-2y=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-4\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-4\right)}&-\frac{-4}{-2-\left(-4\right)}\\-\frac{1}{-2-\left(-4\right)}&\frac{1}{-2-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-8\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&2\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-8\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\left(-8\right)+2\left(-2\right)\\-\frac{1}{2}\left(-8\right)+\frac{1}{2}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=3
Tangohia ngā huānga poukapa x me y.
x-4y=-8,x-2y=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x-4y+2y=-8+2
Me tango x-2y=-2 mai i x-4y=-8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y+2y=-8+2
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2y=-8+2
Tāpiri -4y ki te 2y.
-2y=-6
Tāpiri -8 ki te 2.
y=3
Whakawehea ngā taha e rua ki te -2.
x-2\times 3=-2
Whakaurua te 3 mō y ki x-2y=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-6=-2
Whakareatia -2 ki te 3.
x=4
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=4,y=3
Kua oti te pūnaha te whakatau.