Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-3.5y=2,x-2y=16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-3.5y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=3.5y+2
Me tāpiri \frac{7y}{2} ki ngā taha e rua o te whārite.
3.5y+2-2y=16
Whakakapia te \frac{7y}{2}+2 mō te x ki tērā atu whārite, x-2y=16.
1.5y+2=16
Tāpiri \frac{7y}{2} ki te -2y.
1.5y=14
Me tango 2 mai i ngā taha e rua o te whārite.
y=\frac{28}{3}
Whakawehea ngā taha e rua o te whārite ki te 1.5, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=3.5\times \frac{28}{3}+2
Whakaurua te \frac{28}{3} mō y ki x=3.5y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{98}{3}+2
Whakareatia 3.5 ki te \frac{28}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{104}{3}
Tāpiri 2 ki te \frac{98}{3}.
x=\frac{104}{3},y=\frac{28}{3}
Kua oti te pūnaha te whakatau.
x-3.5y=2,x-2y=16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-3.5\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-3.5\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-3.5\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3.5\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-3.5\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3.5\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3.5\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-3.5\right)}&-\frac{-3.5}{-2-\left(-3.5\right)}\\-\frac{1}{-2-\left(-3.5\right)}&\frac{1}{-2-\left(-3.5\right)}\end{matrix}\right)\left(\begin{matrix}2\\16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3}&\frac{7}{3}\\-\frac{2}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}2\\16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3}\times 2+\frac{7}{3}\times 16\\-\frac{2}{3}\times 2+\frac{2}{3}\times 16\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{104}{3}\\\frac{28}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{104}{3},y=\frac{28}{3}
Tangohia ngā huānga poukapa x me y.
x-3.5y=2,x-2y=16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x-3.5y+2y=2-16
Me tango x-2y=16 mai i x-3.5y=2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3.5y+2y=2-16
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-1.5y=2-16
Tāpiri -\frac{7y}{2} ki te 2y.
-1.5y=-14
Tāpiri 2 ki te -16.
y=\frac{28}{3}
Whakawehea ngā taha e rua o te whārite ki te -1.5, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x-2\times \frac{28}{3}=16
Whakaurua te \frac{28}{3} mō y ki x-2y=16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-\frac{56}{3}=16
Whakareatia -2 ki te \frac{28}{3}.
x=\frac{104}{3}
Me tāpiri \frac{56}{3} ki ngā taha e rua o te whārite.
x=\frac{104}{3},y=\frac{28}{3}
Kua oti te pūnaha te whakatau.