Whakaoti mō x, y
x=25
y=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-3y=1,2x+5y=90
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-3y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=3y+1
Me tāpiri 3y ki ngā taha e rua o te whārite.
2\left(3y+1\right)+5y=90
Whakakapia te 3y+1 mō te x ki tērā atu whārite, 2x+5y=90.
6y+2+5y=90
Whakareatia 2 ki te 3y+1.
11y+2=90
Tāpiri 6y ki te 5y.
11y=88
Me tango 2 mai i ngā taha e rua o te whārite.
y=8
Whakawehea ngā taha e rua ki te 11.
x=3\times 8+1
Whakaurua te 8 mō y ki x=3y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=24+1
Whakareatia 3 ki te 8.
x=25
Tāpiri 1 ki te 24.
x=25,y=8
Kua oti te pūnaha te whakatau.
x-3y=1,2x+5y=90
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-3\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\90\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-3\\2&5\end{matrix}\right))\left(\begin{matrix}1&-3\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&5\end{matrix}\right))\left(\begin{matrix}1\\90\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-3\\2&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&5\end{matrix}\right))\left(\begin{matrix}1\\90\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&5\end{matrix}\right))\left(\begin{matrix}1\\90\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-3\times 2\right)}&-\frac{-3}{5-\left(-3\times 2\right)}\\-\frac{2}{5-\left(-3\times 2\right)}&\frac{1}{5-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}1\\90\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}&\frac{3}{11}\\-\frac{2}{11}&\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}1\\90\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}+\frac{3}{11}\times 90\\-\frac{2}{11}+\frac{1}{11}\times 90\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\8\end{matrix}\right)
Mahia ngā tātaitanga.
x=25,y=8
Tangohia ngā huānga poukapa x me y.
x-3y=1,2x+5y=90
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2\left(-3\right)y=2,2x+5y=90
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x-6y=2,2x+5y=90
Whakarūnātia.
2x-2x-6y-5y=2-90
Me tango 2x+5y=90 mai i 2x-6y=2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y-5y=2-90
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-11y=2-90
Tāpiri -6y ki te -5y.
-11y=-88
Tāpiri 2 ki te -90.
y=8
Whakawehea ngā taha e rua ki te -11.
2x+5\times 8=90
Whakaurua te 8 mō y ki 2x+5y=90. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+40=90
Whakareatia 5 ki te 8.
2x=50
Me tango 40 mai i ngā taha e rua o te whārite.
x=25
Whakawehea ngā taha e rua ki te 2.
x=25,y=8
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}