Whakaoti mō x, y
x=10
y=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-3-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
x-y=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
37-3x-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
-3x-y=-37
Tangohia te 37 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x-y=3,-3x-y=-37
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+3
Me tāpiri y ki ngā taha e rua o te whārite.
-3\left(y+3\right)-y=-37
Whakakapia te y+3 mō te x ki tērā atu whārite, -3x-y=-37.
-3y-9-y=-37
Whakareatia -3 ki te y+3.
-4y-9=-37
Tāpiri -3y ki te -y.
-4y=-28
Me tāpiri 9 ki ngā taha e rua o te whārite.
y=7
Whakawehea ngā taha e rua ki te -4.
x=7+3
Whakaurua te 7 mō y ki x=y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=10
Tāpiri 3 ki te 7.
x=10,y=7
Kua oti te pūnaha te whakatau.
x-3-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
x-y=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
37-3x-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
-3x-y=-37
Tangohia te 37 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x-y=3,-3x-y=-37
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\-3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-37\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\-3&-1\end{matrix}\right))\left(\begin{matrix}1&-1\\-3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-3&-1\end{matrix}\right))\left(\begin{matrix}3\\-37\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\-3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-3&-1\end{matrix}\right))\left(\begin{matrix}3\\-37\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-3&-1\end{matrix}\right))\left(\begin{matrix}3\\-37\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-\left(-3\right)\right)}&-\frac{-1}{-1-\left(-\left(-3\right)\right)}\\-\frac{-3}{-1-\left(-\left(-3\right)\right)}&\frac{1}{-1-\left(-\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}3\\-37\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\-\frac{3}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}3\\-37\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 3-\frac{1}{4}\left(-37\right)\\-\frac{3}{4}\times 3-\frac{1}{4}\left(-37\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\7\end{matrix}\right)
Mahia ngā tātaitanga.
x=10,y=7
Tangohia ngā huānga poukapa x me y.
x-3-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
x-y=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
37-3x-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
-3x-y=-37
Tangohia te 37 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x-y=3,-3x-y=-37
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x+3x-y+y=3+37
Me tango -3x-y=-37 mai i x-y=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x+3x=3+37
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4x=3+37
Tāpiri x ki te 3x.
4x=40
Tāpiri 3 ki te 37.
x=10
Whakawehea ngā taha e rua ki te 4.
-3\times 10-y=-37
Whakaurua te 10 mō x ki -3x-y=-37. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-30-y=-37
Whakareatia -3 ki te 10.
-y=-7
Me tāpiri 30 ki ngā taha e rua o te whārite.
y=7
Whakawehea ngā taha e rua ki te -1.
x=10,y=7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}