Whakaoti mō x, y, z
x=4
y=-1
z=2
Tohaina
Kua tāruatia ki te papatopenga
x=2y-3z+12
Me whakaoti te x-2y+3z=12 mō x.
2\left(2y-3z+12\right)-y-2z=5 2\left(2y-3z+12\right)+2y-z=4
Whakakapia te 2y-3z+12 mō te x i te whārite tuarua me te tuatoru.
y=\frac{8}{3}z-\frac{19}{3} z=\frac{20}{7}+\frac{6}{7}y
Me whakaoti ēnei whārite mō y me z takitahi.
z=\frac{20}{7}+\frac{6}{7}\left(\frac{8}{3}z-\frac{19}{3}\right)
Whakakapia te \frac{8}{3}z-\frac{19}{3} mō te y i te whārite z=\frac{20}{7}+\frac{6}{7}y.
z=2
Me whakaoti te z=\frac{20}{7}+\frac{6}{7}\left(\frac{8}{3}z-\frac{19}{3}\right) mō z.
y=\frac{8}{3}\times 2-\frac{19}{3}
Whakakapia te 2 mō te z i te whārite y=\frac{8}{3}z-\frac{19}{3}.
y=-1
Tātaitia te y i te y=\frac{8}{3}\times 2-\frac{19}{3}.
x=2\left(-1\right)-3\times 2+12
Whakakapia te -1 mō te y me te 2 mō z i te whārite x=2y-3z+12.
x=4
Tātaitia te x i te x=2\left(-1\right)-3\times 2+12.
x=4 y=-1 z=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}