Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y, z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x=2y-3z+12
Me whakaoti te x-2y+3z=12 mō x.
2\left(2y-3z+12\right)-y-2z=5 2\left(2y-3z+12\right)+2y-z=4
Whakakapia te 2y-3z+12 mō te x i te whārite tuarua me te tuatoru.
y=\frac{8}{3}z-\frac{19}{3} z=\frac{20}{7}+\frac{6}{7}y
Me whakaoti ēnei whārite mō y me z takitahi.
z=\frac{20}{7}+\frac{6}{7}\left(\frac{8}{3}z-\frac{19}{3}\right)
Whakakapia te \frac{8}{3}z-\frac{19}{3} mō te y i te whārite z=\frac{20}{7}+\frac{6}{7}y.
z=2
Me whakaoti te z=\frac{20}{7}+\frac{6}{7}\left(\frac{8}{3}z-\frac{19}{3}\right) mō z.
y=\frac{8}{3}\times 2-\frac{19}{3}
Whakakapia te 2 mō te z i te whārite y=\frac{8}{3}z-\frac{19}{3}.
y=-1
Tātaitia te y i te y=\frac{8}{3}\times 2-\frac{19}{3}.
x=2\left(-1\right)-3\times 2+12
Whakakapia te -1 mō te y me te 2 mō z i te whārite x=2y-3z+12.
x=4
Tātaitia te x i te x=2\left(-1\right)-3\times 2+12.
x=4 y=-1 z=2
Kua oti te pūnaha te whakatau.