Whakaoti mō x, y
x=4\text{, }y=3
x=-\frac{8}{3}\approx -2.666666667\text{, }y=-\frac{1}{3}\approx -0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
2y-x=2
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
2y-x=2,x^{2}-y^{2}=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2y-x=2
Whakaotia te 2y-x=2 mō y mā te wehe i te y i te taha mauī o te tohu ōrite.
2y=x+2
Me tango -x mai i ngā taha e rua o te whārite.
y=\frac{1}{2}x+1
Whakawehea ngā taha e rua ki te 2.
x^{2}-\left(\frac{1}{2}x+1\right)^{2}=7
Whakakapia te \frac{1}{2}x+1 mō te y ki tērā atu whārite, x^{2}-y^{2}=7.
x^{2}-\left(\frac{1}{4}x^{2}+x+1\right)=7
Pūrua \frac{1}{2}x+1.
x^{2}-\frac{1}{4}x^{2}-x-1=7
Whakareatia -1 ki te \frac{1}{4}x^{2}+x+1.
\frac{3}{4}x^{2}-x-1=7
Tāpiri x^{2} ki te -\frac{1}{4}x^{2}.
\frac{3}{4}x^{2}-x-8=0
Me tango 7 mai i ngā taha e rua o te whārite.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{3}{4}\left(-8\right)}}{2\times \frac{3}{4}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1-\left(\frac{1}{2}\right)^{2} mō a, -\frac{1}{2}\times 2 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-3\left(-8\right)}}{2\times \frac{3}{4}}
Whakareatia -4 ki te 1-\left(\frac{1}{2}\right)^{2}.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times \frac{3}{4}}
Whakareatia -3 ki te -8.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times \frac{3}{4}}
Tāpiri 1 ki te 24.
x=\frac{-\left(-1\right)±5}{2\times \frac{3}{4}}
Tuhia te pūtakerua o te 25.
x=\frac{1±5}{2\times \frac{3}{4}}
Ko te tauaro o -\frac{1}{2}\times 2 ko 1.
x=\frac{1±5}{\frac{3}{2}}
Whakareatia 2 ki te 1-\left(\frac{1}{2}\right)^{2}.
x=\frac{6}{\frac{3}{2}}
Nā, me whakaoti te whārite x=\frac{1±5}{\frac{3}{2}} ina he tāpiri te ±. Tāpiri 1 ki te 5.
x=4
Whakawehe 6 ki te \frac{3}{2} mā te whakarea 6 ki te tau huripoki o \frac{3}{2}.
x=-\frac{4}{\frac{3}{2}}
Nā, me whakaoti te whārite x=\frac{1±5}{\frac{3}{2}} ina he tango te ±. Tango 5 mai i 1.
x=-\frac{8}{3}
Whakawehe -4 ki te \frac{3}{2} mā te whakarea -4 ki te tau huripoki o \frac{3}{2}.
y=\frac{1}{2}\times 4+1
E rua ngā otinga mō x: 4 me -\frac{8}{3}. Me whakakapi 4 mō x ki te whārite y=\frac{1}{2}x+1 hei kimi i te otinga hāngai mō y e pai ai ki ngā whārite e rua.
y=2+1
Whakareatia \frac{1}{2} ki te 4.
y=3
Tāpiri \frac{1}{2}\times 4 ki te 1.
y=\frac{1}{2}\left(-\frac{8}{3}\right)+1
Me whakakapi te -\frac{8}{3} ināianei mō te x ki te whārite y=\frac{1}{2}x+1 ka whakaoti hei kimi i te otinga hāngai mō y e pai ai ki ngā whārite e rua.
y=-\frac{4}{3}+1
Whakareatia \frac{1}{2} ki te -\frac{8}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=-\frac{1}{3}
Tāpiri -\frac{8}{3}\times \frac{1}{2} ki te 1.
y=3,x=4\text{ or }y=-\frac{1}{3},x=-\frac{8}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}