Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-4x-80=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-80\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-80\right)}}{2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16+320}}{2}
Whakareatia -4 ki te -80.
x=\frac{-\left(-4\right)±\sqrt{336}}{2}
Tāpiri 16 ki te 320.
x=\frac{-\left(-4\right)±4\sqrt{21}}{2}
Tuhia te pūtakerua o te 336.
x=\frac{4±4\sqrt{21}}{2}
Ko te tauaro o -4 ko 4.
x=\frac{4\sqrt{21}+4}{2}
Nā, me whakaoti te whārite x=\frac{4±4\sqrt{21}}{2} ina he tāpiri te ±. Tāpiri 4 ki te 4\sqrt{21}.
x=2\sqrt{21}+2
Whakawehe 4+4\sqrt{21} ki te 2.
x=\frac{4-4\sqrt{21}}{2}
Nā, me whakaoti te whārite x=\frac{4±4\sqrt{21}}{2} ina he tango te ±. Tango 4\sqrt{21} mai i 4.
x=2-2\sqrt{21}
Whakawehe 4-4\sqrt{21} ki te 2.
x^{2}-4x-80=\left(x-\left(2\sqrt{21}+2\right)\right)\left(x-\left(2-2\sqrt{21}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2+2\sqrt{21} mō te x_{1} me te 2-2\sqrt{21} mō te x_{2}.