Whakaoti mō x
x=\frac{3+\sqrt{7}i}{4}\approx 0.75+0.661437828i
x=\frac{-\sqrt{7}i+3}{4}\approx 0.75-0.661437828i
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-\frac{3}{2}x=-1
Tangohia te \frac{3}{2}x mai i ngā taha e rua.
x^{2}-\frac{3}{2}x+1=0
Me tāpiri te 1 ki ngā taha e rua.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -\frac{3}{2} mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4}}{2}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{-\frac{7}{4}}}{2}
Tāpiri \frac{9}{4} ki te -4.
x=\frac{-\left(-\frac{3}{2}\right)±\frac{\sqrt{7}i}{2}}{2}
Tuhia te pūtakerua o te -\frac{7}{4}.
x=\frac{\frac{3}{2}±\frac{\sqrt{7}i}{2}}{2}
Ko te tauaro o -\frac{3}{2} ko \frac{3}{2}.
x=\frac{3+\sqrt{7}i}{2\times 2}
Nā, me whakaoti te whārite x=\frac{\frac{3}{2}±\frac{\sqrt{7}i}{2}}{2} ina he tāpiri te ±. Tāpiri \frac{3}{2} ki te \frac{i\sqrt{7}}{2}.
x=\frac{3+\sqrt{7}i}{4}
Whakawehe \frac{3+i\sqrt{7}}{2} ki te 2.
x=\frac{-\sqrt{7}i+3}{2\times 2}
Nā, me whakaoti te whārite x=\frac{\frac{3}{2}±\frac{\sqrt{7}i}{2}}{2} ina he tango te ±. Tango \frac{i\sqrt{7}}{2} mai i \frac{3}{2}.
x=\frac{-\sqrt{7}i+3}{4}
Whakawehe \frac{3-i\sqrt{7}}{2} ki te 2.
x=\frac{3+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+3}{4}
Kua oti te whārite te whakatau.
x^{2}-\frac{3}{2}x=-1
Tangohia te \frac{3}{2}x mai i ngā taha e rua.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-1+\left(-\frac{3}{4}\right)^{2}
Whakawehea te -\frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{4}. Nā, tāpiria te pūrua o te -\frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-1+\frac{9}{16}
Pūruatia -\frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{7}{16}
Tāpiri -1 ki te \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=-\frac{7}{16}
Tauwehea x^{2}-\frac{3}{2}x+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{-\frac{7}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{4}=\frac{\sqrt{7}i}{4} x-\frac{3}{4}=-\frac{\sqrt{7}i}{4}
Whakarūnātia.
x=\frac{3+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+3}{4}
Me tāpiri \frac{3}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}