Whakaoti mō x, y
x=\frac{\sqrt{7}+1}{2}\approx 1.822875656\text{, }y=\frac{1-\sqrt{7}}{2}\approx -0.822875656
x=\frac{1-\sqrt{7}}{2}\approx -0.822875656\text{, }y=\frac{\sqrt{7}+1}{2}\approx 1.822875656
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=1,y^{2}+x^{2}=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=1
Whakaotia te x+y=1 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+1
Me tango y mai i ngā taha e rua o te whārite.
y^{2}+\left(-y+1\right)^{2}=4
Whakakapia te -y+1 mō te x ki tērā atu whārite, y^{2}+x^{2}=4.
y^{2}+y^{2}-2y+1=4
Pūrua -y+1.
2y^{2}-2y+1=4
Tāpiri y^{2} ki te y^{2}.
2y^{2}-2y-3=0
Me tango 4 mai i ngā taha e rua o te whārite.
y=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\left(-1\right)^{2} mō a, 1\times 1\left(-1\right)\times 2 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-3\right)}}{2\times 2}
Pūrua 1\times 1\left(-1\right)\times 2.
y=\frac{-\left(-2\right)±\sqrt{4-8\left(-3\right)}}{2\times 2}
Whakareatia -4 ki te 1+1\left(-1\right)^{2}.
y=\frac{-\left(-2\right)±\sqrt{4+24}}{2\times 2}
Whakareatia -8 ki te -3.
y=\frac{-\left(-2\right)±\sqrt{28}}{2\times 2}
Tāpiri 4 ki te 24.
y=\frac{-\left(-2\right)±2\sqrt{7}}{2\times 2}
Tuhia te pūtakerua o te 28.
y=\frac{2±2\sqrt{7}}{2\times 2}
Ko te tauaro o 1\times 1\left(-1\right)\times 2 ko 2.
y=\frac{2±2\sqrt{7}}{4}
Whakareatia 2 ki te 1+1\left(-1\right)^{2}.
y=\frac{2\sqrt{7}+2}{4}
Nā, me whakaoti te whārite y=\frac{2±2\sqrt{7}}{4} ina he tāpiri te ±. Tāpiri 2 ki te 2\sqrt{7}.
y=\frac{\sqrt{7}+1}{2}
Whakawehe 2+2\sqrt{7} ki te 4.
y=\frac{2-2\sqrt{7}}{4}
Nā, me whakaoti te whārite y=\frac{2±2\sqrt{7}}{4} ina he tango te ±. Tango 2\sqrt{7} mai i 2.
y=\frac{1-\sqrt{7}}{2}
Whakawehe 2-2\sqrt{7} ki te 4.
x=-\frac{\sqrt{7}+1}{2}+1
E rua ngā otinga mō y: \frac{1+\sqrt{7}}{2} me \frac{1-\sqrt{7}}{2}. Me whakakapi \frac{1+\sqrt{7}}{2} mō y ki te whārite x=-y+1 hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=-\frac{1-\sqrt{7}}{2}+1
Me whakakapi te \frac{1-\sqrt{7}}{2} ināianei mō te y ki te whārite x=-y+1 ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=-\frac{\sqrt{7}+1}{2}+1,y=\frac{\sqrt{7}+1}{2}\text{ or }x=-\frac{1-\sqrt{7}}{2}+1,y=\frac{1-\sqrt{7}}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}