Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-3y=-5
Whakaarohia te whārite tuarua. Tangohia te 3y mai i ngā taha e rua.
x-3y=-5,y^{2}+x^{2}=25
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-3y=-5
Whakaotia te x-3y=-5 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=3y-5
Me tango -3y mai i ngā taha e rua o te whārite.
y^{2}+\left(3y-5\right)^{2}=25
Whakakapia te 3y-5 mō te x ki tērā atu whārite, y^{2}+x^{2}=25.
y^{2}+9y^{2}-30y+25=25
Pūrua 3y-5.
10y^{2}-30y+25=25
Tāpiri y^{2} ki te 9y^{2}.
10y^{2}-30y=0
Me tango 25 mai i ngā taha e rua o te whārite.
y=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}}}{2\times 10}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\times 3^{2} mō a, 1\left(-5\right)\times 2\times 3 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-30\right)±30}{2\times 10}
Tuhia te pūtakerua o te \left(-30\right)^{2}.
y=\frac{30±30}{2\times 10}
Ko te tauaro o 1\left(-5\right)\times 2\times 3 ko 30.
y=\frac{30±30}{20}
Whakareatia 2 ki te 1+1\times 3^{2}.
y=\frac{60}{20}
Nā, me whakaoti te whārite y=\frac{30±30}{20} ina he tāpiri te ±. Tāpiri 30 ki te 30.
y=3
Whakawehe 60 ki te 20.
y=\frac{0}{20}
Nā, me whakaoti te whārite y=\frac{30±30}{20} ina he tango te ±. Tango 30 mai i 30.
y=0
Whakawehe 0 ki te 20.
x=3\times 3-5
E rua ngā otinga mō y: 3 me 0. Me whakakapi 3 mō y ki te whārite x=3y-5 hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=9-5
Whakareatia 3 ki te 3.
x=4
Tāpiri 3\times 3 ki te -5.
x=-5
Me whakakapi te 0 ināianei mō te y ki te whārite x=3y-5 ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=4,y=3\text{ or }x=-5,y=0
Kua oti te pūnaha te whakatau.