Whakaoti mō x, y
x=\frac{1-\sqrt{3}}{2}\approx -0.366025404\text{, }y=\frac{-\sqrt{3}-1}{2}\approx -1.366025404
x=\frac{\sqrt{3}+1}{2}\approx 1.366025404\text{, }y=\frac{\sqrt{3}-1}{2}\approx 0.366025404
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-y=1,y^{2}+x^{2}=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=1
Whakaotia te x-y=1 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+1
Me tango -y mai i ngā taha e rua o te whārite.
y^{2}+\left(y+1\right)^{2}=2
Whakakapia te y+1 mō te x ki tērā atu whārite, y^{2}+x^{2}=2.
y^{2}+y^{2}+2y+1=2
Pūrua y+1.
2y^{2}+2y+1=2
Tāpiri y^{2} ki te y^{2}.
2y^{2}+2y-1=0
Me tango 2 mai i ngā taha e rua o te whārite.
y=\frac{-2±\sqrt{2^{2}-4\times 2\left(-1\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\times 1^{2} mō a, 1\times 1\times 1\times 2 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-2±\sqrt{4-4\times 2\left(-1\right)}}{2\times 2}
Pūrua 1\times 1\times 1\times 2.
y=\frac{-2±\sqrt{4-8\left(-1\right)}}{2\times 2}
Whakareatia -4 ki te 1+1\times 1^{2}.
y=\frac{-2±\sqrt{4+8}}{2\times 2}
Whakareatia -8 ki te -1.
y=\frac{-2±\sqrt{12}}{2\times 2}
Tāpiri 4 ki te 8.
y=\frac{-2±2\sqrt{3}}{2\times 2}
Tuhia te pūtakerua o te 12.
y=\frac{-2±2\sqrt{3}}{4}
Whakareatia 2 ki te 1+1\times 1^{2}.
y=\frac{2\sqrt{3}-2}{4}
Nā, me whakaoti te whārite y=\frac{-2±2\sqrt{3}}{4} ina he tāpiri te ±. Tāpiri -2 ki te 2\sqrt{3}.
y=\frac{\sqrt{3}-1}{2}
Whakawehe -2+2\sqrt{3} ki te 4.
y=\frac{-2\sqrt{3}-2}{4}
Nā, me whakaoti te whārite y=\frac{-2±2\sqrt{3}}{4} ina he tango te ±. Tango 2\sqrt{3} mai i -2.
y=\frac{-\sqrt{3}-1}{2}
Whakawehe -2-2\sqrt{3} ki te 4.
x=\frac{\sqrt{3}-1}{2}+1
E rua ngā otinga mō y: \frac{-1+\sqrt{3}}{2} me \frac{-1-\sqrt{3}}{2}. Me whakakapi \frac{-1+\sqrt{3}}{2} mō y ki te whārite x=y+1 hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=\frac{-\sqrt{3}-1}{2}+1
Me whakakapi te \frac{-1-\sqrt{3}}{2} ināianei mō te y ki te whārite x=y+1 ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=\frac{\sqrt{3}-1}{2}+1,y=\frac{\sqrt{3}-1}{2}\text{ or }x=\frac{-\sqrt{3}-1}{2}+1,y=\frac{-\sqrt{3}-1}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}