Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-y=1,y^{2}+x^{2}=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=1
Whakaotia te x-y=1 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+1
Me tango -y mai i ngā taha e rua o te whārite.
y^{2}+\left(y+1\right)^{2}=2
Whakakapia te y+1 mō te x ki tērā atu whārite, y^{2}+x^{2}=2.
y^{2}+y^{2}+2y+1=2
Pūrua y+1.
2y^{2}+2y+1=2
Tāpiri y^{2} ki te y^{2}.
2y^{2}+2y-1=0
Me tango 2 mai i ngā taha e rua o te whārite.
y=\frac{-2±\sqrt{2^{2}-4\times 2\left(-1\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\times 1^{2} mō a, 1\times 1\times 1\times 2 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-2±\sqrt{4-4\times 2\left(-1\right)}}{2\times 2}
Pūrua 1\times 1\times 1\times 2.
y=\frac{-2±\sqrt{4-8\left(-1\right)}}{2\times 2}
Whakareatia -4 ki te 1+1\times 1^{2}.
y=\frac{-2±\sqrt{4+8}}{2\times 2}
Whakareatia -8 ki te -1.
y=\frac{-2±\sqrt{12}}{2\times 2}
Tāpiri 4 ki te 8.
y=\frac{-2±2\sqrt{3}}{2\times 2}
Tuhia te pūtakerua o te 12.
y=\frac{-2±2\sqrt{3}}{4}
Whakareatia 2 ki te 1+1\times 1^{2}.
y=\frac{2\sqrt{3}-2}{4}
Nā, me whakaoti te whārite y=\frac{-2±2\sqrt{3}}{4} ina he tāpiri te ±. Tāpiri -2 ki te 2\sqrt{3}.
y=\frac{\sqrt{3}-1}{2}
Whakawehe -2+2\sqrt{3} ki te 4.
y=\frac{-2\sqrt{3}-2}{4}
Nā, me whakaoti te whārite y=\frac{-2±2\sqrt{3}}{4} ina he tango te ±. Tango 2\sqrt{3} mai i -2.
y=\frac{-\sqrt{3}-1}{2}
Whakawehe -2-2\sqrt{3} ki te 4.
x=\frac{\sqrt{3}-1}{2}+1
E rua ngā otinga mō y: \frac{-1+\sqrt{3}}{2} me \frac{-1-\sqrt{3}}{2}. Me whakakapi \frac{-1+\sqrt{3}}{2} mō y ki te whārite x=y+1 hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=\frac{-\sqrt{3}-1}{2}+1
Me whakakapi te \frac{-1-\sqrt{3}}{2} ināianei mō te y ki te whārite x=y+1 ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=\frac{\sqrt{3}-1}{2}+1,y=\frac{\sqrt{3}-1}{2}\text{ or }x=\frac{-\sqrt{3}-1}{2}+1,y=\frac{-\sqrt{3}-1}{2}
Kua oti te pūnaha te whakatau.