Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-y=6,y^{2}+x^{2}=18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=6
Whakaotia te x-y=6 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+6
Me tango -y mai i ngā taha e rua o te whārite.
y^{2}+\left(y+6\right)^{2}=18
Whakakapia te y+6 mō te x ki tērā atu whārite, y^{2}+x^{2}=18.
y^{2}+y^{2}+12y+36=18
Pūrua y+6.
2y^{2}+12y+36=18
Tāpiri y^{2} ki te y^{2}.
2y^{2}+12y+18=0
Me tango 18 mai i ngā taha e rua o te whārite.
y=\frac{-12±\sqrt{12^{2}-4\times 2\times 18}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\times 1^{2} mō a, 1\times 6\times 1\times 2 mō b, me 18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-12±\sqrt{144-4\times 2\times 18}}{2\times 2}
Pūrua 1\times 6\times 1\times 2.
y=\frac{-12±\sqrt{144-8\times 18}}{2\times 2}
Whakareatia -4 ki te 1+1\times 1^{2}.
y=\frac{-12±\sqrt{144-144}}{2\times 2}
Whakareatia -8 ki te 18.
y=\frac{-12±\sqrt{0}}{2\times 2}
Tāpiri 144 ki te -144.
y=-\frac{12}{2\times 2}
Tuhia te pūtakerua o te 0.
y=-\frac{12}{4}
Whakareatia 2 ki te 1+1\times 1^{2}.
y=-3
Whakawehe -12 ki te 4.
x=-3+6
E rua ngā otinga mō y: -3 me -3. Me whakakapi -3 mō y ki te whārite x=y+6 hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=3
Tāpiri -3 ki te 6.
x=3,y=-3\text{ or }x=3,y=-3
Kua oti te pūnaha te whakatau.