Whakaoti mō x, y (complex solution)
x=\frac{3+\sqrt{7}i}{2}\approx 1.5+1.322875656i\text{, }y=\frac{-\sqrt{7}i+3}{2}\approx 1.5-1.322875656i
x=\frac{-\sqrt{7}i+3}{2}\approx 1.5-1.322875656i\text{, }y=\frac{3+\sqrt{7}i}{2}\approx 1.5+1.322875656i
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=3
Whakaotia te x+y=3 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+3
Me tango y mai i ngā taha e rua o te whārite.
y^{2}+\left(-y+3\right)^{2}=1
Whakakapia te -y+3 mō te x ki tērā atu whārite, y^{2}+x^{2}=1.
y^{2}+y^{2}-6y+9=1
Pūrua -y+3.
2y^{2}-6y+9=1
Tāpiri y^{2} ki te y^{2}.
2y^{2}-6y+8=0
Me tango 1 mai i ngā taha e rua o te whārite.
y=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\times 8}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\left(-1\right)^{2} mō a, 1\times 3\left(-1\right)\times 2 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-6\right)±\sqrt{36-4\times 2\times 8}}{2\times 2}
Pūrua 1\times 3\left(-1\right)\times 2.
y=\frac{-\left(-6\right)±\sqrt{36-8\times 8}}{2\times 2}
Whakareatia -4 ki te 1+1\left(-1\right)^{2}.
y=\frac{-\left(-6\right)±\sqrt{36-64}}{2\times 2}
Whakareatia -8 ki te 8.
y=\frac{-\left(-6\right)±\sqrt{-28}}{2\times 2}
Tāpiri 36 ki te -64.
y=\frac{-\left(-6\right)±2\sqrt{7}i}{2\times 2}
Tuhia te pūtakerua o te -28.
y=\frac{6±2\sqrt{7}i}{2\times 2}
Ko te tauaro o 1\times 3\left(-1\right)\times 2 ko 6.
y=\frac{6±2\sqrt{7}i}{4}
Whakareatia 2 ki te 1+1\left(-1\right)^{2}.
y=\frac{6+2\sqrt{7}i}{4}
Nā, me whakaoti te whārite y=\frac{6±2\sqrt{7}i}{4} ina he tāpiri te ±. Tāpiri 6 ki te 2i\sqrt{7}.
y=\frac{3+\sqrt{7}i}{2}
Whakawehe 6+2i\sqrt{7} ki te 4.
y=\frac{-2\sqrt{7}i+6}{4}
Nā, me whakaoti te whārite y=\frac{6±2\sqrt{7}i}{4} ina he tango te ±. Tango 2i\sqrt{7} mai i 6.
y=\frac{-\sqrt{7}i+3}{2}
Whakawehe 6-2i\sqrt{7} ki te 4.
x=-\frac{3+\sqrt{7}i}{2}+3
E rua ngā otinga mō y: \frac{3+i\sqrt{7}}{2} me \frac{3-i\sqrt{7}}{2}. Me whakakapi \frac{3+i\sqrt{7}}{2} mō y ki te whārite x=-y+3 hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=-\frac{-\sqrt{7}i+3}{2}+3
Me whakakapi te \frac{3-i\sqrt{7}}{2} ināianei mō te y ki te whārite x=-y+3 ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=-\frac{3+\sqrt{7}i}{2}+3,y=\frac{3+\sqrt{7}i}{2}\text{ or }x=-\frac{-\sqrt{7}i+3}{2}+3,y=\frac{-\sqrt{7}i+3}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}