Whakaoti mō x, p
x=8\text{, }p=6
x=-6\text{, }p=-8
Graph
Tohaina
Kua tāruatia ki te papatopenga
p-x+2=0,x^{2}+p^{2}-100=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
p-x+2=0
Whakaotia te p-x+2=0 mō p mā te wehe i te p i te taha mauī o te tohu ōrite.
p-x=-2
Me tango 2 mai i ngā taha e rua o te whārite.
p=x-2
Me tango -x mai i ngā taha e rua o te whārite.
x^{2}+\left(x-2\right)^{2}-100=0
Whakakapia te x-2 mō te p ki tērā atu whārite, x^{2}+p^{2}-100=0.
x^{2}+x^{2}-4x+4-100=0
Pūrua x-2.
2x^{2}-4x+4-100=0
Tāpiri x^{2} ki te x^{2}.
2x^{2}-4x-96=0
Tāpiri 1\left(-2\right)^{2} ki te -100.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-96\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\times 1^{2} mō a, 1\left(-2\right)\times 1\times 2 mō b, me -96 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-96\right)}}{2\times 2}
Pūrua 1\left(-2\right)\times 1\times 2.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-96\right)}}{2\times 2}
Whakareatia -4 ki te 1+1\times 1^{2}.
x=\frac{-\left(-4\right)±\sqrt{16+768}}{2\times 2}
Whakareatia -8 ki te -96.
x=\frac{-\left(-4\right)±\sqrt{784}}{2\times 2}
Tāpiri 16 ki te 768.
x=\frac{-\left(-4\right)±28}{2\times 2}
Tuhia te pūtakerua o te 784.
x=\frac{4±28}{2\times 2}
Ko te tauaro o 1\left(-2\right)\times 1\times 2 ko 4.
x=\frac{4±28}{4}
Whakareatia 2 ki te 1+1\times 1^{2}.
x=\frac{32}{4}
Nā, me whakaoti te whārite x=\frac{4±28}{4} ina he tāpiri te ±. Tāpiri 4 ki te 28.
x=8
Whakawehe 32 ki te 4.
x=-\frac{24}{4}
Nā, me whakaoti te whārite x=\frac{4±28}{4} ina he tango te ±. Tango 28 mai i 4.
x=-6
Whakawehe -24 ki te 4.
p=8-2
E rua ngā otinga mō x: 8 me -6. Me whakakapi 8 mō x ki te whārite p=x-2 hei kimi i te otinga hāngai mō p e pai ai ki ngā whārite e rua.
p=6
Tāpiri 1\times 8 ki te -2.
p=-6-2
Me whakakapi te -6 ināianei mō te x ki te whārite p=x-2 ka whakaoti hei kimi i te otinga hāngai mō p e pai ai ki ngā whārite e rua.
p=-8
Tāpiri -6 ki te -2.
p=6,x=8\text{ or }p=-8,x=-6
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}