Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-y=-3
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
2x-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
x-y=-3,2x-y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y-3
Me tāpiri y ki ngā taha e rua o te whārite.
2\left(y-3\right)-y=0
Whakakapia te y-3 mō te x ki tērā atu whārite, 2x-y=0.
2y-6-y=0
Whakareatia 2 ki te y-3.
y-6=0
Tāpiri 2y ki te -y.
y=6
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=6-3
Whakaurua te 6 mō y ki x=y-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Tāpiri -3 ki te 6.
x=3,y=6
Kua oti te pūnaha te whakatau.
x-y=-3
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
2x-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
x-y=-3,2x-y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-2\right)}&-\frac{-1}{-1-\left(-2\right)}\\-\frac{2}{-1-\left(-2\right)}&\frac{1}{-1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-3\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\-2&1\end{matrix}\right)\left(\begin{matrix}-3\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\left(-3\right)\\-2\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\6\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=6
Tangohia ngā huānga poukapa x me y.
x-y=-3
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
2x-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
x-y=-3,2x-y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-2x-y+y=-3
Me tango 2x-y=0 mai i x-y=-3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x-2x=-3
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-x=-3
Tāpiri x ki te -2x.
x=3
Whakawehea ngā taha e rua ki te -1.
2\times 3-y=0
Whakaurua te 3 mō x ki 2x-y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
6-y=0
Whakareatia 2 ki te 3.
-y=-6
Me tango 6 mai i ngā taha e rua o te whārite.
y=6
Whakawehea ngā taha e rua ki te -1.
x=3,y=6
Kua oti te pūnaha te whakatau.