Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-\frac{y}{2}=0
Whakaarohia te whārite tuatahi. Tangohia te \frac{y}{2} mai i ngā taha e rua.
2x-y=0
Whakareatia ngā taha e rua o te whārite ki te 2.
y-x=-5
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
2x-y=0,-x+y=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=y
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{2}y
Whakawehea ngā taha e rua ki te 2.
-\frac{1}{2}y+y=-5
Whakakapia te \frac{y}{2} mō te x ki tērā atu whārite, -x+y=-5.
\frac{1}{2}y=-5
Tāpiri -\frac{y}{2} ki te y.
y=-10
Me whakarea ngā taha e rua ki te 2.
x=\frac{1}{2}\left(-10\right)
Whakaurua te -10 mō y ki x=\frac{1}{2}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-5
Whakareatia \frac{1}{2} ki te -10.
x=-5,y=-10
Kua oti te pūnaha te whakatau.
x-\frac{y}{2}=0
Whakaarohia te whārite tuatahi. Tangohia te \frac{y}{2} mai i ngā taha e rua.
2x-y=0
Whakareatia ngā taha e rua o te whārite ki te 2.
y-x=-5
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
2x-y=0,-x+y=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right))\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-1\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-\left(-1\right)\right)}&-\frac{-1}{2-\left(-\left(-1\right)\right)}\\-\frac{-1}{2-\left(-\left(-1\right)\right)}&\frac{2}{2-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&1\\1&2\end{matrix}\right)\left(\begin{matrix}0\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\2\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-10\end{matrix}\right)
Mahia ngā tātaitanga.
x=-5,y=-10
Tangohia ngā huānga poukapa x me y.
x-\frac{y}{2}=0
Whakaarohia te whārite tuatahi. Tangohia te \frac{y}{2} mai i ngā taha e rua.
2x-y=0
Whakareatia ngā taha e rua o te whārite ki te 2.
y-x=-5
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
2x-y=0,-x+y=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x-\left(-y\right)=0,2\left(-1\right)x+2y=2\left(-5\right)
Kia ōrite ai a 2x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-2x+y=0,-2x+2y=-10
Whakarūnātia.
-2x+2x+y-2y=10
Me tango -2x+2y=-10 mai i -2x+y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-2y=10
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=10
Tāpiri y ki te -2y.
y=-10
Whakawehea ngā taha e rua ki te -1.
-x-10=-5
Whakaurua te -10 mō y ki -x+y=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x=5
Me tāpiri 10 ki ngā taha e rua o te whārite.
x=-5
Whakawehea ngā taha e rua ki te -1.
x=-5,y=-10
Kua oti te pūnaha te whakatau.