Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-y=4
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
x-y=4,4x-y=22
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+4
Me tāpiri y ki ngā taha e rua o te whārite.
4\left(y+4\right)-y=22
Whakakapia te y+4 mō te x ki tērā atu whārite, 4x-y=22.
4y+16-y=22
Whakareatia 4 ki te y+4.
3y+16=22
Tāpiri 4y ki te -y.
3y=6
Me tango 16 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te 3.
x=2+4
Whakaurua te 2 mō y ki x=y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=6
Tāpiri 4 ki te 2.
x=6,y=2
Kua oti te pūnaha te whakatau.
x-y=4
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
x-y=4,4x-y=22
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\22\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}4\\22\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}4\\22\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}4\\22\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-4\right)}&-\frac{-1}{-1-\left(-4\right)}\\-\frac{4}{-1-\left(-4\right)}&\frac{1}{-1-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}4\\22\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{3}\\-\frac{4}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}4\\22\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 4+\frac{1}{3}\times 22\\-\frac{4}{3}\times 4+\frac{1}{3}\times 22\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=6,y=2
Tangohia ngā huānga poukapa x me y.
x-y=4
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
x-y=4,4x-y=22
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-4x-y+y=4-22
Me tango 4x-y=22 mai i x-y=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x-4x=4-22
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3x=4-22
Tāpiri x ki te -4x.
-3x=-18
Tāpiri 4 ki te -22.
x=6
Whakawehea ngā taha e rua ki te -3.
4\times 6-y=22
Whakaurua te 6 mō x ki 4x-y=22. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
24-y=22
Whakareatia 4 ki te 6.
-y=-2
Me tango 24 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te -1.
x=6,y=2
Kua oti te pūnaha te whakatau.