Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-y=4
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
2x+3-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
2x-y=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x-y=4,2x-y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+4
Me tāpiri y ki ngā taha e rua o te whārite.
2\left(y+4\right)-y=-3
Whakakapia te y+4 mō te x ki tērā atu whārite, 2x-y=-3.
2y+8-y=-3
Whakareatia 2 ki te y+4.
y+8=-3
Tāpiri 2y ki te -y.
y=-11
Me tango 8 mai i ngā taha e rua o te whārite.
x=-11+4
Whakaurua te -11 mō y ki x=y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-7
Tāpiri 4 ki te -11.
x=-7,y=-11
Kua oti te pūnaha te whakatau.
x-y=4
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
2x+3-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
2x-y=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x-y=4,2x-y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-2\right)}&-\frac{-1}{-1-\left(-2\right)}\\-\frac{2}{-1-\left(-2\right)}&\frac{1}{-1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\-2&1\end{matrix}\right)\left(\begin{matrix}4\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4-3\\-2\times 4-3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\-11\end{matrix}\right)
Mahia ngā tātaitanga.
x=-7,y=-11
Tangohia ngā huānga poukapa x me y.
x-y=4
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
2x+3-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
2x-y=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x-y=4,2x-y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-2x-y+y=4+3
Me tango 2x-y=-3 mai i x-y=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x-2x=4+3
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-x=4+3
Tāpiri x ki te -2x.
-x=7
Tāpiri 4 ki te 3.
x=-7
Whakawehea ngā taha e rua ki te -1.
2\left(-7\right)-y=-3
Whakaurua te -7 mō x ki 2x-y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-14-y=-3
Whakareatia 2 ki te -7.
-y=11
Me tāpiri 14 ki ngā taha e rua o te whārite.
y=-11
Whakawehea ngā taha e rua ki te -1.
x=-7,y=-11
Kua oti te pūnaha te whakatau.