Whakaoti mō x, y
x=0
y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x=-30y
Whakaarohia te whārite tuatahi. Whakareatia te 3 ki te -10, ka -30.
10\left(-30\right)y+3y=0
Whakakapia te -30y mō te x ki tērā atu whārite, 10x+3y=0.
-300y+3y=0
Whakareatia 10 ki te -30y.
-297y=0
Tāpiri -300y ki te 3y.
y=0
Whakawehea ngā taha e rua ki te -297.
x=0
Whakaurua te 0 mō y ki x=-30y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=0,y=0
Kua oti te pūnaha te whakatau.
x=-30y
Whakaarohia te whārite tuatahi. Whakareatia te 3 ki te -10, ka -30.
x+30y=0
Me tāpiri te 30y ki ngā taha e rua.
y=\frac{-x\times 10}{3}
Whakaarohia te whārite tuarua. Tuhia te \frac{x}{3}\left(-10\right) hei hautanga kotahi.
y=\frac{-10x}{3}
Whakareatia te -1 ki te 10, ka -10.
y-\frac{-10x}{3}=0
Tangohia te \frac{-10x}{3} mai i ngā taha e rua.
3y+10x=0
Whakareatia ngā taha e rua o te whārite ki te 3.
x+30y=0,10x+3y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&30\\10&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&30\\10&3\end{matrix}\right))\left(\begin{matrix}1&30\\10&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&30\\10&3\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&30\\10&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&30\\10&3\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&30\\10&3\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-30\times 10}&-\frac{30}{3-30\times 10}\\-\frac{10}{3-30\times 10}&\frac{1}{3-30\times 10}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{99}&\frac{10}{99}\\\frac{10}{297}&-\frac{1}{297}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Whakareatia ngā poukapa.
x=0,y=0
Tangohia ngā huānga poukapa x me y.
x=-30y
Whakaarohia te whārite tuatahi. Whakareatia te 3 ki te -10, ka -30.
x+30y=0
Me tāpiri te 30y ki ngā taha e rua.
y=\frac{-x\times 10}{3}
Whakaarohia te whārite tuarua. Tuhia te \frac{x}{3}\left(-10\right) hei hautanga kotahi.
y=\frac{-10x}{3}
Whakareatia te -1 ki te 10, ka -10.
y-\frac{-10x}{3}=0
Tangohia te \frac{-10x}{3} mai i ngā taha e rua.
3y+10x=0
Whakareatia ngā taha e rua o te whārite ki te 3.
x+30y=0,10x+3y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
10x+10\times 30y=0,10x+3y=0
Kia ōrite ai a x me 10x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 10 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
10x+300y=0,10x+3y=0
Whakarūnātia.
10x-10x+300y-3y=0
Me tango 10x+3y=0 mai i 10x+300y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
300y-3y=0
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
297y=0
Tāpiri 300y ki te -3y.
y=0
Whakawehea ngā taha e rua ki te 297.
10x=0
Whakaurua te 0 mō y ki 10x+3y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=0
Whakawehea ngā taha e rua ki te 10.
x=0,y=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}